login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109771
G.f.: sqrt(1+6*x+x^2).
0
1, 3, -4, 12, -44, 180, -788, 3612, -17116, 83172, -412196, 2075436, -10586892, 54595476, -284157492, 1490774076, -7875206076, 41854313412, -223636052036, 1200637707852, -6473448634348, 35037238641780, -190299310403924, 1036863750837852, -5665846701859484
OFFSET
0,2
COMMENTS
G.f. = square root of weight enumerator of [4,3,2] even weight code.
a(n) gives the row sums of the coefficient array for the family Gegenbauer_C(n,-1/2,-2x-1). [From Paul Barry, Apr 20 2009]
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
FORMULA
a(n)=(-1)^n*sum{k=0..n, C(n+k-2,n-k)*C(2k,k)/(1-2k)}=(-1)^n*sum{k=0..n, C(n+k-2,n-k)*A002420(k)}; [From Paul Barry, Apr 20 2009]
G.f.: G(0)/2, where G(k)= 1 + 1/( 1 - x*(6+x)*(2*k-1)/(x*(6+x)*(2*k-1) - 2*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
a(n) ~ -(-1)^n * 2^(1/4) * (1 + sqrt(2))^(2*n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Dec 12 2017
D-finite with recurrence: n*a(n) +3*(2*n-3)*a(n-1) +(n-3)*a(n-2)=0. - R. J. Mathar, Jan 25 2020
EXAMPLE
1+3*x-4*x^2+12*x^3-44*x^4+180*x^5-788*x^6+3612*x^7-...
MATHEMATICA
CoefficientList[Series[Sqrt[1+6x+x^2], {x, 0, 30}], x] (* Harvey P. Dale, Jun 30 2017 *)
CROSSREFS
Sequence in context: A360992 A217477 A299809 * A052626 A336687 A298115
KEYWORD
sign
AUTHOR
STATUS
approved