login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109773
Expansion of eighth root of theta series of D_8 lattice.
2
1, 14, -544, 34496, -2512254, 197053696, -16194254272, 1374326128896, -119403428951808, 10561444878559246, -947458249960057024, 85971010094510200128, -7874673015172093889024, 727016151987267244001536, -67573426491012510177925760, 6317185611058637805840976640
OFFSET
0,2
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
FORMULA
a(n) ~ -(-1)^n * c * d^n / n^(9/8), where d = -1/EllipticNomeQ(-3+2*sqrt(2)) = 101.05698591144255836558034070124390358691255555299851256465840129800034600429... and c = 0.11312909975079493828483346745366595624358550348529207605517154972... - Vaclav Kotesovec, Dec 11 2017, updated Mar 16 2024
MATHEMATICA
terms = 16; f[q_] = LatticeData["D8", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q]^(1/8), {q, 0, 2 terms}]; CoefficientList[s, q^2][[1 ;; terms]] // Round (* Jean-François Alcover, Jul 07 2017 *)
CoefficientList[Series[((EllipticTheta[3, 0, Sqrt[x]]^8 + EllipticTheta[4, 0, Sqrt[x]]^8)/2)^(1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 10 2017 *)
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved