login
A052626
(2^n+2)*n!.
0
3, 4, 12, 60, 432, 4080, 47520, 655200, 10402560, 186520320, 3723148800, 81829440000, 1962948556800, 51024208435200, 1428503479603200, 42852489039360000, 1371237803679744000, 46621373950255104000
OFFSET
0,1
FORMULA
E.g.f.: -(-3+5*x)/(-1+2*x)/(-1+x)
Recurrence: {a(0)=3, a(1)=4, (2*n^2+6*n+4)*a(n)+(-6-3*n)*a(n+1)+a(n+2)=0}
(2^n+2)*n!
MAPLE
spec := [S, {S=Union(Sequence(Z), Sequence(Z), Sequence(Union(Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
CROSSREFS
Sequence in context: A217477 A299809 A109771 * A336687 A298115 A122903
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved