login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109767
Triangle T(n,k), 0 <= k <= n, defined by T(n,k) = 2^k*A001497(n,k).
1
1, 2, 2, 12, 12, 4, 120, 120, 48, 8, 1680, 1680, 720, 160, 16, 30240, 30240, 13440, 3360, 480, 32, 665280, 665280, 302400, 80640, 13440, 1344, 64, 17297280, 17297280, 7983360, 2217600, 403200, 48384, 3584, 128, 518918400, 518918400
OFFSET
0,2
COMMENTS
Also square array of unsigned coefficients of Hermite polynomials.
T[n,k]is A128099(2n,k)*A001813(n-k). - Richard Turk, Sep 26 2017
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
FORMULA
T(n,k) = (2n-k)!*2^k/(k!*(n-k)!).
EXAMPLE
Rows begin:
1
2, 2,
12, 12, 4,
120, 120, 48, 8,
1680, 1680, 720, 160, 16,
Unsigned coefficients of Hermite polynomials:
1, 2, 4, 8, ...
2, 12, 48, 160, ...
12, 120, 720, 3360, ...
120, 1680, 13440, 80640, ...
1680, 30240, 302400, 2217600, ...
MAPLE
seq(seq((2*n-k)!*2^k/(k!*(n-k)!), k=0..n), n=0..10); # Robert Israel, Sep 26 2017
MATHEMATICA
y[n_, x_] := Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n-1/2, 1/x]; t[n_, k_] := 2^n*Coefficient[y[n, x], x, k]; Table[t[n, k], {n, 0, 8}, {k, n, 0, -1}] // Flatten (* or *) t[n_, k_] := (2*n - k)!*2^k/(k!*(n-k)!); Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 01 2013 *)
Table[((2n-k)!*2^k)/(k!(n-k)!), {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Nov 23 2017 *)
PROG
(Magma) /* As triangle */ [[Factorial(2*n-k)*2^k/(Factorial(k)*Factorial(n-k)): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 14 2015
CROSSREFS
Cf. A001497.
Sequence in context: A190295 A228154 A275279 * A339297 A196061 A342582
KEYWORD
nonn,tabl,nice
AUTHOR
Philippe Deléham, Aug 12 2005
STATUS
approved