OFFSET
1,2
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
Project Euler, Problem 427: n-sequences
FORMULA
Sum_{k=1..n} k * T(n,k) = A228194(n). - Alois P. Heinz, Dec 23 2020
EXAMPLE
T(1,1) = 1: [1].
T(2,1) = 2: [1,2], [2,1].
T(2,2) = 2: [1,1], [2,2].
T(3,1) = 12: [1,2,1], [1,2,3], [1,3,1], [1,3,2], [2,1,2], [2,1,3], [2,3,1], [2,3,2], [3,1,2], [3,1,3], [3,2,1], [3,2,3].
T(3,2) = 12: [1,1,2], [1,1,3], [1,2,2], [1,3,3], [2,1,1], [2,2,1], [2,2,3], [2,3,3], [3,1,1], [3,2,2], [3,3,1], [3,3,2].
T(3,3) = 3: [1,1,1], [2,2,2], [3,3,3].
Triangle T(n,k) begins:
. 1;
. 2, 2;
. 12, 12, 3;
. 108, 120, 24, 4;
. 1280, 1520, 280, 40, 5;
. 18750, 23400, 3930, 510, 60, 6;
. 326592, 423360, 65016, 7644, 840, 84, 7;
. 6588344, 8800008, 1241464, 132552, 13440, 1288, 112, 8;
MAPLE
T:= proc(n) option remember; local b; b:=
proc(m, s, i) option remember; `if`(m>i or s>m, 0,
`if`(i=1, n, `if`(s=1, (n-1)*add(b(m, h, i-1), h=1..m),
b(m, s-1, i-1) +`if`(s=m, b(m-1, s-1, i-1), 0))))
end; forget(b);
seq(add(b(k, s, n), s=1..k), k=1..n)
end:
seq(T(n), n=1..12); # Alois P. Heinz, Aug 18 2013
MATHEMATICA
T[n_] := T[n] = Module[{b}, b[m_, s_, i_] := b[m, s, i] = If[m>i || s>m, 0, If[i == 1, n, If[s == 1, (n-1)*Sum[b[m, h, i-1], {h, 1, m}], b[m, s-1, i-1] + If[s == m, b[m-1, s-1, i-1], 0]]]]; Table[Sum[b[k, s, n], {s, 1, k}], {k, 1, n}]]; Table[ T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 06 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Walt Rorie-Baety, Aug 15 2013
STATUS
approved