login
A228617
T(n,k) is the number of s in {1,...,n}^n having shortest run with the same value of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
14
1, 0, 1, 0, 2, 2, 0, 24, 0, 3, 0, 240, 12, 0, 4, 0, 3080, 40, 0, 0, 5, 0, 46410, 210, 30, 0, 0, 6, 0, 822612, 840, 84, 0, 0, 0, 7, 0, 16771832, 5208, 112, 56, 0, 0, 0, 8, 0, 387395856, 23760, 720, 144, 0, 0, 0, 0, 9, 0, 9999848700, 148410, 2610, 180, 90, 0, 0, 0, 0, 10
OFFSET
0,5
COMMENTS
Sum_{k=0..n} k*T(n,k) = A228618(n).
Sum_{k=0..n} T(n,k) = A000312(n).
T(2*n,n) = A002939(n) for n>0.
T(2*n+1,n) = A033586(n) for n>1.
T(2*n+2,n) = A085250(n+1) for n>2.
T(2*n+3,n) = A033586(n+1) for n>3.
LINKS
EXAMPLE
T(3,1) = 24: [1,1,2], [1,1,3], [1,2,1], [1,2,2], [1,2,3], [1,3,1], [1,3,2], [1,3,3], [2,1,1], [2,1,2], [2,1,3], [2,2,1], [2,2,3], [2,3,1], [2,3,2], [2,3,3], [3,1,1], [3,1,2], [3,1,3], [3,2,1], [3,2,2], [3,2,3], [3,3,1], [3,3,2].
T(3,3) = 3: [1,1,1], [2,2,2], [3,3,3].
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 2;
0, 24, 0, 3;
0, 240, 12, 0, 4;
0, 3080, 40, 0, 0, 5;
0, 46410, 210, 30, 0, 0, 6;
0, 822612, 840, 84, 0, 0, 0, 7;
0, 16771832, 5208, 112, 56, 0, 0, 0, 8;
CROSSREFS
Row sums give: A000312.
Main diagonal gives: A028310.
Sequence in context: A228273 A069521 A245687 * A119836 A158112 A219496
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 27 2013
STATUS
approved