login
A379222
Number of trailing 1-bits in the binary representation of the sum of the divisors of the n-th odd square: a(n) = sigma((2*n-1)^2).
2
1, 1, 5, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 3, 7, 2, 2, 1, 3, 1, 1, 3, 4, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 6, 1, 2, 2, 1, 6, 1, 2, 1, 3, 2, 2, 3, 7, 2, 1, 7, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 4, 1, 2, 6, 3, 2, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 4, 2, 1, 7, 1, 1, 2, 1, 5, 1, 1, 4, 1, 1, 1
OFFSET
1,3
FORMULA
a(n) = A378999(2*n-1) = A378998(A016754(n-1)) = A007814(1+A000203(A016754(n-1))).
MATHEMATICA
IntegerExponent[DivisorSigma[1, (2*Range[100] - 1)^2] + 1, 2] (* Paolo Xausa, Jan 23 2025 *)
PROG
(PARI) A379222(n) = valuation(1+sigma((2*n-1)^2), 2);
CROSSREFS
Odd bisection of A378999.
Sequence in context: A026518 A362394 A345949 * A348505 A051008 A304042
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 22 2024
STATUS
approved