login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378999
Number of trailing 1-bits in the binary representation of sigma(n^2).
4
1, 3, 1, 5, 5, 2, 1, 7, 1, 1, 1, 2, 3, 4, 2, 9, 2, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 3, 1, 1, 11, 1, 1, 3, 3, 7, 2, 2, 1, 2, 2, 1, 2, 3, 5, 1, 2, 1, 2, 3, 1, 4, 2, 2, 3, 1, 1, 1, 1, 3, 3, 1, 13, 1, 3, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 6, 3, 1, 3, 2, 2, 2, 3, 1, 2, 6, 1, 1, 1, 2
OFFSET
1,2
FORMULA
a(n) = A378998(A000290(n)).
a(n) = A007814(1+A065764(n)). [the 2-adic valuation of 1+sigma(n^2)]
MATHEMATICA
IntegerExponent[DivisorSigma[1, Range[100]^2] + 1, 2] (* Paolo Xausa, Dec 19 2024 *)
PROG
(PARI) A378999(n) = valuation(sigma(n^2)+1, 2);
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Antti Karttunen, Dec 16 2024
STATUS
approved