login
A378999
Number of trailing 1-bits in the binary representation of sigma(n^2).
4
1, 3, 1, 5, 5, 2, 1, 7, 1, 1, 1, 2, 3, 4, 2, 9, 2, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 3, 1, 1, 11, 1, 1, 3, 3, 7, 2, 2, 1, 2, 2, 1, 2, 3, 5, 1, 2, 1, 2, 3, 1, 4, 2, 2, 3, 1, 1, 1, 1, 3, 3, 1, 13, 1, 3, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 6, 3, 1, 3, 2, 2, 2, 3, 1, 2, 6, 1, 1, 1, 2
OFFSET
1,2
FORMULA
a(n) = A378998(A000290(n)).
a(n) = A007814(1+A065764(n)). [the 2-adic valuation of 1+sigma(n^2)]
MATHEMATICA
IntegerExponent[DivisorSigma[1, Range[100]^2] + 1, 2] (* Paolo Xausa, Dec 19 2024 *)
PROG
(PARI) A378999(n) = valuation(sigma(n^2)+1, 2);
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 16 2024
STATUS
approved