The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065764 Sum of divisors of square numbers. 49
 1, 7, 13, 31, 31, 91, 57, 127, 121, 217, 133, 403, 183, 399, 403, 511, 307, 847, 381, 961, 741, 931, 553, 1651, 781, 1281, 1093, 1767, 871, 2821, 993, 2047, 1729, 2149, 1767, 3751, 1407, 2667, 2379, 3937, 1723, 5187, 1893, 4123, 3751, 3871, 2257, 6643 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Unlike A065765, the sums of divisors of squares give remainders r=1,3,5 modulo 6: sigma(4)==1, sigma(49)==3, sigma(2401)==5 (mod 6). See also A097022. a(n) is also the number of ordered pairs of positive integers whose LCM is n, (see LeVeque). - Enrique Pérez Herrero, Aug 26 2013 Main diagonal of A319526. - Omar E. Pol, Sep 25 2018 Subsequence of primes is A023195 \ {3}; also, 31 is the only known prime to be twice in the data because 31 = sigma(16) = sigma(25) (see A119598 and Goormaghtigh conjecture link). - Bernard Schott, Jan 17 2021 REFERENCES W. J. LeVeque, Fundamentals of Number Theory, pp. 125 Problem 4, Dover NY 1996. LINKS T. D. Noe, Table of n, a(n) for n=1..10000 Wikipedia, Goormaghtigh conjecture. FORMULA a(n) = sigma(n^2) = A000203(A000290(n)). Multiplicative with a(p^e) = (p^(2*e+1)-1)/(p-1). - Vladeta Jovovic, Dec 01 2001 Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)/zeta(2*s-2), inverse Mobius transform of A000082. - R. J. Mathar, Mar 06 2011 Dirichlet convolution of A001157 by the absolute terms of A055615. Also the Dirichlet convolution of A048250 by A000290. - R. J. Mathar, Apr 12 2011 a(n) = Sum_{d|n} d*Psi(d), where Psi is A001615. - Enrique Pérez Herrero, Feb 25 2012 a(n) >= (n+1) * sigma(n) - n, where sigma is A000203, equality holds if n is in A000961. - Enrique Pérez Herrero, Apr 21 2012 Sum_{k=1..n} a(k) ~ 5*Zeta(3) * n^3 / Pi^2. - Vaclav Kotesovec, Jan 30 2019 Sum_{k>=1} 1/a(k) = 1.3947708738535614499846243600124612760835313454790187655653356563282177118... - Vaclav Kotesovec, Sep 20 2020 MAPLE with(numtheory): [sigma(n^2)\$n=1..50]; # Muniru A Asiru, Jan 01 2019 MATHEMATICA Table[Plus@@Divisors[n^2], {n, 48}] (* Alonso del Arte, Feb 24 2012 *) f[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *) PROG (MuPAD) numlib::sigma(n^2)\$ n=1..81 // Zerinvary Lajos, May 13 2008 (Sage) [sigma(n^2, 1)for n in range(1, 49)] # Zerinvary Lajos, Jun 13 2009 (PARI) a(n) = sigma(n^2); \\ Harry J. Smith, Oct 30 2009 (Magma) [SumOfDivisors(n^2): n in [1..48]]; // Bruno Berselli, Apr 12 2011 (GAP) a:=List([1..50], n->Sigma(n^2));; Print(a); # Muniru A Asiru, Jan 01 2019 CROSSREFS Cf. A000203, A000290, A028982, A319526. Sequence in context: A283709 A063583 A350072 * A273757 A073473 A272407 Adjacent sequences: A065761 A065762 A065763 * A065765 A065766 A065767 KEYWORD nonn,easy,mult AUTHOR Labos Elemer, Nov 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 15:10 EDT 2023. Contains 361668 sequences. (Running on oeis4.)