login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008458
Coordination sequence for hexagonal lattice.
59
1, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 252, 258, 264, 270, 276, 282, 288, 294, 300, 306, 312, 318, 324, 330, 336, 342, 348
OFFSET
0,2
COMMENTS
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice. It is also the planar net 3.3.3.3.3.3.
Coordination sequence for 2-dimensional cyclotomic lattice Z[zeta_6].
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 20 ).
Also the Engel expansion of exp^(1/6); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
Numbers k such that k+floor(k/2) | k*floor(k/2). - Wesley Ivan Hurt, Dec 01 2020
LINKS
M. Beck and S. Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also on arXiv, arXiv:1803.08530 [math.CO], 2018-2019.
Rostislav Grigorchuk and Cosmas Kravaris, On the growth of the wallpaper groups, arXiv:2012.13661 [math.GR], 2020. See section 4.1 p. 19.
Branko Grünbaum and Geoffrey C. Shephard, Tilings by regular polygons, Mathematics Magazine, 50 (1977), 227-247.
Reticular Chemistry Structure Resource, hxl
N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Gruenbaum and Shephard (1977)]
N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
William A. Stein, The modular forms database
FORMULA
G.f.: (1 + 4*x + x^2)/(1 - x)^2.
a(n) = A003215(n) - A003215(n-1), n > 0.
Equals binomial transform of [1, 5, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Jul 08 2008
G.f.: Hypergeometric2F1([3,-2], [1], -x/(1-x)). - Paul Barry, Sep 18 2008
a(n) = 0^n + 6*n. - Vincenzo Librandi, Aug 21 2011
n*a(1) + (n-1)*a(2) + (n-2)*a(3) + ... + 2*a(n-1) + a(n) = n^3. - Warren Breslow, Oct 28 2013
E.g.f.: 1 + 6*x*exp(x). - Stefano Spezia, Jun 26 2022
EXAMPLE
From Omar E. Pol, Aug 20 2011: (Start)
Illustration of initial terms:
. o o o o o
. o o o o o o
. o o o o o o o
. o o o o o o o o
. o o o o o o o o o
. o o o o o o o o
. 1 o o o o o o o
. 6 o o o o o o
. 12 o o o o o
. 18
. 24
(End)
G.f. = 1 + 6*x + 12*x^2 + 18*x^3 + 24*x^4 + 30*x^5 + 36*x^6 + 42*x^7 + 48*x^8 + 54*x^9 + ...
MAPLE
1, seq(6*n, n=1..65);
MATHEMATICA
Join[{1}, 6*Range[60]] (* Harvey P. Dale, Jul 21 2013 *)
a[ n_] := Boole[n == 0] + 6 n; (* Michael Somos, May 21 2015 *)
PROG
(PARI) {a(n) = 6*n + (!n)};
(Magma) [0^n+6*n: n in [0..60] ]; // Vincenzo Librandi, Aug 21 2011
(Maxima) makelist(if n=0 then 1 else 6*n, n, 0, 65); /* Martin Ettl, Nov 12 2012 */
(SageMath) [6*n+int(n==0) for n in range(66)] # G. C. Greubel, May 25 2023
CROSSREFS
Essentially the same as A008588.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574(4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579(3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529(3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Cf. A032528. - Omar E. Pol, Aug 20 2011
Cf. A048477 (binomial Transf.)
Sequence in context: A121827 A126798 A175130 * A008588 A078596 A187389
KEYWORD
nonn,easy,nice
STATUS
approved