login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298036
Coordination sequence of Dual(4.6.12) tiling with respect to a 12-valent node.
23
1, 12, 12, 36, 24, 60, 36, 84, 48, 108, 60, 132, 72, 156, 84, 180, 96, 204, 108, 228, 120, 252, 132, 276, 144, 300, 156, 324, 168, 348, 180, 372, 192, 396, 204, 420, 216, 444, 228, 468, 240, 492, 252, 516, 264, 540, 276, 564, 288, 588, 300
OFFSET
0,2
COMMENTS
Conjecture: For n>0, a(n)=6n if n even, otherwise 12n.
The conjecture can easily be shown to be true: The vertices at distance 2k consist of 3k 12-valent and 3k 4-alent vertices, and the vertices at distance 2k+1 consist of 6(k+1) 6-valent and 6(k+1) 4-valent vertices. - Charlie Neder, Apr 22 2019
LINKS
N. J. A. Sloane, Illustration of initial terms (shows one 60-degree sector of tiling)
N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
FORMULA
From Charlie Neder, Apr 22 2019: (Start)
a(n) = 6 * n * (1 + n mod 2), n > 0.
G.f.: (1 + 12*x + 10*x^2 + 12*x^3 + x^4)/(1 - x^2)^2. (End)
MATHEMATICA
LinearRecurrence[{0, 2, 0, -1}, {1, 12, 12, 36, 24}, 100] (* Paolo Xausa, Jul 19 2024 *)
CROSSREFS
Cf. A072154, A298037 (partial sums), A298038 (hexavalent node), A298040 (tetravalent node).
Cf. A109043 (a(n)/6), A026741 (a(n)/12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Sequence in context: A048759 A364434 A303646 * A119877 A307842 A147833
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 22 2018
EXTENSIONS
a(7)-a(50) from Charlie Neder, Apr 22 2019
STATUS
approved