login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298033
Coordination sequence of the Dual(3.4.6.4) tiling with respect to a hexavalent node.
22
1, 6, 12, 24, 30, 42, 48, 60, 66, 78, 84, 96, 102, 114, 120, 132, 138, 150, 156, 168, 174, 186, 192, 204, 210, 222, 228, 240, 246, 258, 264, 276, 282, 294, 300, 312, 318, 330, 336, 348, 354, 366, 372, 384, 390, 402, 408, 420, 426, 438, 444, 456, 462, 474, 480, 492, 498, 510, 516, 528, 534, 546, 552
OFFSET
0,2
COMMENTS
Also known as the mta net.
This is one of the Laves tilings.
LINKS
Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also arXiv:1803.08530.
Reticular Chemistry Structure Resource (RCSR), The mta tiling (or net)
N. J. A. Sloane, The Dual(3.4.6.4) tiling
N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
FORMULA
Theorem: For n>0, a(n) = 9*n-6 if n is even, a(n) = 9*n-3 if n is odd.
The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. The subgraph H is shown above in the links.
G.f.: (1 + 5*x + 5*x^2 + 7*x^3) / ((1 - x)*(1 - x^2)).
First differences are 1, 5, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, ...
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. - Colin Barker, Jan 25 2018
a(n) = 6*floor((3n-1)/2) for n > 0. - M. F. Hasler, Jan 11 2022
MAPLE
f6:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 9*n-6 else 9*n-3; fi; end;
[seq(f6(n), n=0..80)];
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 1, -1}, {6, 12, 24}, 62]] (* Jean-François Alcover, Apr 23 2018 *)
PROG
(PARI) Vec((1 + 5*x + 5*x^2 + 7*x^3) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Jan 25 2018
(PARI) apply( {A298033(n)=if(n, n*3\/2*6-6, 1)}, [0..66]) \\ M. F. Hasler, Jan 11 2022
CROSSREFS
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Cf. A008574, A038764 (partial sums), A298029 (coordination sequence for a trivalent node), A298031 (coordination sequence for a tetravalent node).
Sequence in context: A307225 A261476 A119840 * A358507 A358526 A069171
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 21 2018, corrected Jan 24 2018.
STATUS
approved