login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A038764
a(n) = (9*n^2 + 3*n + 2)/2.
16
1, 7, 22, 46, 79, 121, 172, 232, 301, 379, 466, 562, 667, 781, 904, 1036, 1177, 1327, 1486, 1654, 1831, 2017, 2212, 2416, 2629, 2851, 3082, 3322, 3571, 3829, 4096, 4372, 4657, 4951, 5254, 5566, 5887, 6217, 6556, 6904, 7261, 7627, 8002, 8386, 8779, 9181
OFFSET
0,2
COMMENTS
Coefficients of x^2 of certain rook polynomials (for n>=1; see p. 18 of the Riordan paper). - Emeric Deutsch, Mar 08 2004
a(n) is also the least weight of self-conjugate partitions having n+1 different parts such that each part is congruent to 1 modulo 3. The first such self-conjugate partitions, corresponding to a(n) = 0, 1, 2, 3, are 1, 4+3, 7+4+4+4+3, 10+7+7+7+4+4+4+3. - Augustine O. Munagi, Dec 18 2008
REFERENCES
J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
LINKS
S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
A. O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501.
FORMULA
a(n) = binomial(n,0) + 6*binomial(n,1) + 9*binomial(n,2).
From Paul Barry, Mar 15 2003: (Start)
G.f.: (1 + 2*x)^2/(1 - x)^3.
Binomial transform of (1, 6, 9, 0, 0, 0, ...). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Colin Barker, Jan 22 2018
a(n) = a(n-1) + 3*(3*n-1) for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
a(n) = hypergeometric([-n, -2], [1], 3). - Peter Luschny, Nov 19 2014
E.g.f.: exp(x)*(2 + 12*x + 9*x^2)/2. - Stefano Spezia, Mar 07 2023
PROG
(Sage)
a = lambda n: hypergeometric([-n, -2], [1], 3)
print([simplify(a(n)) for n in range(46)]) # Peter Luschny, Nov 19 2014
(PARI) a(n)=n*(9*n+3)/2+1 \\ Charles R Greathouse IV, Jun 17 2017
(PARI) Vec((1 + 2*x)^2 / (1 - x)^3 + O(x^60)) \\ Colin Barker, Jan 22 2018
CROSSREFS
Reflection of A060544 in A081272.
Second column of A024462. Also = A064641(n+1, 2).
Shallow diagonal of triangular spiral in A051682.
Partial sums of A122709.
Sequence in context: A033954 A159227 A081274 * A132438 A010001 A197059
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 03 2000
EXTENSIONS
More terms from James A. Sellers, May 03 2000
Entry revised by N. J. A. Sloane, Jan 23 2018
STATUS
approved