The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024462 Triangle T(n,k) read by rows, arising in enumeration of catafusenes. 6
 1, 1, 1, 1, 2, 1, 1, 5, 7, 3, 1, 8, 22, 24, 9, 1, 11, 46, 90, 81, 27, 1, 14, 79, 228, 351, 270, 81, 1, 17, 121, 465, 1035, 1323, 891, 243, 1, 20, 172, 828, 2430, 4428, 4860, 2916, 729, 1, 23, 232, 1344, 4914, 11718, 18144, 17496, 9477, 2187, 1, 26, 301, 2040, 8946, 26460, 53298, 71928, 61965, 30618, 6561 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS G. C. Greubel, Rows n = 0..20 of triangle, flattened S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774; see Table III (p. 767). FORMULA T(n, k) = 3 * T(n-1, k-1) + T(n-1, k), starting with [1], [1, 1], [1, 2, 1]. From Petros Hadjicostas, May 27 2019: (Start) T(n, k) = (n-2)!/(k! * (n-k)!) * (9*n*(n-1) - 4*k*(3*n-k-2)) * 3^(k-2) for n >= max(k, 2) and k >= 0. (See the top formula of p. 767 in Cyvin et al. (1996).) Bivariate g.f.: Sum_{n, k >= 0} T(n, k) * x^n * y^k = 1 + x * (1 + y) + x^2 * (1 + y)^2/(1 - x - 3 * x * y). (End) EXAMPLE Triangle begins (rows indexed by n >= 0 and columns by k >= 0): 1; 1, 1; 1, 2, 1; 1, 5, 7, 3; 1, 8, 22, 24, 9; 1, 11, 46, 90, 81, 27; 1, 14, 79, 228, 351, 270, 81; 1, 17, 121, 465, 1035, 1323, 891, 243; 1, 20, 172, 828, 2430, 4428, 4860, 2916, 729; ... MAPLE ## The following Maple program gives the Taylor expansion of the bivariate g.f. of T(n, k) in powers of x: T := proc (x, y) 1+x*(y+1)+x^2*(y+1)^2/(1-x-3*y*x) end proc; expand(taylor(T(x, y), x = 0, 20)); ## Petros Hadjicostas, May 27 2019 MATHEMATICA T[n_, 0]:= 1; T[n_, k_]:= If[k<0 || k>n, 0, If[n==1 && k==1, 1, If[n==2 && k==1, 2, If[k==n && n>=2, 3^(n-2), 3*T[n-1, k-1] + T[n-1, k]]]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 30 2019 *) PROG (PARI) T(n, k)=if(n<0||k<0||k>n, 0, if(n<3, [[1], [1, 1], [1, 2, 1]][n+1][k+1], 3*T(n-1, k-1)+T(n-1, k))) \\ Ralf Stephan, Jan 25 2005 (Sage) def T(n, k): if (k<0 and k>n): return 0 elif (k==0): return 1 elif (n==k==1): return 1 elif (n==2 and k==1): return 2 elif (n>=2 and k==n): return 3^(n-2) else: return 3*T(n-1, k-1) + T(n-1, k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 30 2019 CROSSREFS Cf. A038763. Left-edge columns (essentially) include A016789 and A038764. Right-edge diagonal columns (essentially) include A000244, A038765, and A081892. Row sums are (essentially) A000302. Sequence in context: A090210 A248925 A168131 * A049252 A098315 A006704 Adjacent sequences: A024459 A024460 A024461 * A024463 A024464 A024465 KEYWORD tabl,nonn,easy AUTHOR N. J. A. Sloane, May 03 2000 EXTENSIONS More terms from James A. Sellers, May 03 2000 Edited by Ralf Stephan, Jan 25 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 14:54 EDT 2023. Contains 363068 sequences. (Running on oeis4.)