login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038765
Next-to-last diagonal of A024462.
3
1, 2, 7, 24, 81, 270, 891, 2916, 9477, 30618, 98415, 314928, 1003833, 3188646, 10097379, 31886460, 100442349, 315675954, 990074583, 3099363912, 9685512225, 30218798142, 94143178827, 292889889684, 910050728661, 2824295364810
OFFSET
0,2
COMMENTS
If w is a binary string of length 2n-1 and v(w) is a vector of the Hamming weights of each substring of length n, then a(n) is the number of distinct v(w) for all possible w. - Orson R. L. Peters, Jun 01 2017
REFERENCES
S. J. Cyvin et al., Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
FORMULA
G.f.: (1-2*x)^2/(1-3*x)^2. [Detlef Pauly (dettodet(AT)yahoo.de), Mar 03 2003]
a(n) = 6*a(n-1)-9*a(n-2) for n>2. a(n) = 3^(n-2)*(n+5) for n>0. [Colin Barker, Jun 25 2012]
MAPLE
seq(ceil(1/9*3^n*(5+n)), n=0..50);
MATHEMATICA
CoefficientList[Series[(1 - 2 x)^2/(1 - 3 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 22 2013 *)
LinearRecurrence[{6, -9}, {1, 2, 7}, 30] (* Harvey P. Dale, Jul 04 2018 *)
PROG
(Magma) [1] cat [3^(n-2)*(n+5): n in [1..30]]; // Vincenzo Librandi, Oct 22 2013
CROSSREFS
Cf. A024462.
Sequence in context: A109682 A215694 A027124 * A027126 A027128 A099463
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 03 2000
EXTENSIONS
More terms from James A. Sellers, May 03 2000
STATUS
approved