login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038762
a(n) = 6*a(n-1) - a(n-2) for n >= 2, with a(0)=3, a(1)=13.
12
3, 13, 75, 437, 2547, 14845, 86523, 504293, 2939235, 17131117, 99847467, 581953685, 3391874643, 19769294173, 115223890395, 671574048197, 3914220398787, 22813748344525, 132968269668363, 774995869665653, 4517006948325555, 26327045820287677, 153445267973400507
OFFSET
0,1
COMMENTS
This gives part of the (increasingly sorted) positive solutions x to the Pell equation x^2 - 2*y^2 = +7. For the y solutions see A038761. The other part of solutions is found in A101386 and A253811. - Wolfdieter Lang, Feb 05 2015
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.
FORMULA
a(n) = sqrt(2*(A038761(n))^2+7).
a(n) = (13*((3+2*sqrt(2))^n -(3-2*sqrt(2))^n)-3*((3+2*sqrt(2))^(n-1) - (3-2*sqrt(2))^(n-1)))/(4*sqrt(2)).
a(n) = A077443(2n) = A038725(n)+A038725(n+1).
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3); a(n) = (1/2)*(3+sqrt(2))*(3+2*sqrt(2))^(n-1)+(1/2)*(3-sqrt(2))*(3-2*sqrt(2))^(n-1). - Antonio Alberto Olivares, Apr 20 2008
G.f.: (3-5*x)/(1-6*x+x^2). - Philippe Deléham, Nov 03 2008, corrected by R. J. Mathar, Nov 06 2011
a(n) = -5*A001109(n) +3*A001109(n+1). - R. J. Mathar, Nov 06 2011
a(n) = rational part of z(n) = (3 + sqrt(2))*(3 + 2*sqrt(2))^n, n >= 0. z(n) gives only one part of the positive solutions to the Pell equation x^2 - 2*y^2 = 7. See the Nagell reference on how to find z(n), and a comment above. - Wolfdieter Lang, Feb 05 2015
E.g.f.: exp(3*x)*(3*cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)). - Stefano Spezia, Mar 16 2024
EXAMPLE
a(3)^2 - 2*A038761(3)^2 = 437^2 - 2*309^2 = +7. - Wolfdieter Lang, Feb 05 2015
MATHEMATICA
LinearRecurrence[{6, -1}, {3, 13}, 40] (* Vincenzo Librandi, Nov 16 2011 *)
PROG
(Magma) I:=[3, 13]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 16 2011
(PARI) x='x+O('x^30); Vec((3-5*x)/(1-6*x+x^2)) \\ G. C. Greubel, Jul 26 2018
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
Barry E. Williams, May 03 2000
EXTENSIONS
More terms from James A. Sellers, May 04 2000
Unspecific Pell comment replaced by Wolfdieter Lang, Feb 05 2015
STATUS
approved