login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038760
a(n) = n - floor(sqrt(n)) * ceiling(sqrt(n)).
5
0, 0, 0, 1, 0, -1, 0, 1, 2, 0, -2, -1, 0, 1, 2, 3, 0, -3, -2, -1, 0, 1, 2, 3, 4, 0, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 0, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 0, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 0, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, -8, -7, -6, -5, -4
OFFSET
0,9
LINKS
FORMULA
a(n) = n - A000196(n)*A003059(n) = n - A038759(n).
EXAMPLE
Sqrt(31) is between 5 and 6, and 31 - 6*5 = 1, so a(31)=1.
MAPLE
a:= n-> n -(x-> floor(x)*ceil(x))(sqrt(n)):
seq(a(n), n=0..100); # Alois P. Heinz, Jan 03 2015
MATHEMATICA
f[n_]:=n-Floor[Sqrt[n]]*Ceiling[Sqrt[n]]; Table[f[n], {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 29 2010 *)
PROG
(PARI) a(n)=if(issquare(n), 0, my(s=sqrtint(n)); n-s^2-s) \\ Charles R Greathouse IV, Feb 07 2013
(Python)
from math import isqrt
def A038760(n): return m-k if (m:=n-(k:=isqrt(n))**2) else 0 # Chai Wah Wu, Jul 28 2022
CROSSREFS
Cf. A053188.
Sequence in context: A036580 A101674 A100820 * A337938 A245825 A143946
KEYWORD
sign,easy
AUTHOR
Henry Bottomley, May 03 2000
STATUS
approved