login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038763
Triangular matrix arising in enumeration of catafusenes, read by rows.
9
1, 1, 1, 1, 4, 3, 1, 7, 15, 9, 1, 10, 36, 54, 27, 1, 13, 66, 162, 189, 81, 1, 16, 105, 360, 675, 648, 243, 1, 19, 153, 675, 1755, 2673, 2187, 729, 1, 22, 210, 1134, 3780, 7938, 10206, 7290, 2187, 1, 25, 276, 1764, 7182, 19278, 34020, 37908, 24057, 6561, 1, 28, 351, 2592, 12474, 40824, 91854, 139968, 137781, 78732, 19683
OFFSET
0,5
COMMENTS
Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
Triangle read by rows, n-th row = X^(n-1) * [1, 1, 0, 0, 0, ...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (3,3,3,...) in the subdiagonal; given row 0 = 1. - Gary W. Adamson, Jul 19 2008
Fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(2x+1)^n; see A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. - Clark Kimberling, Aug 04 2011
LINKS
S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
FORMULA
T(n, 0)=1; T(1, 1)=1; T(n, k)=0 for k>n; T(n, k) = T(n-1, k-1)*3 + T(n-1, k) for n >= 2.
Sum_{k=0..n} T(n,k) = A081294(n). - Philippe Deléham, Sep 22 2006
T(n, k) = A136158(n, n-k). - Philippe Deléham, Dec 17 2007
G.f.: (1-2*x*y)/(1-(3*y+1)*x). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 27 2023: (Start)
T(n, 0) = A000012(n).
T(n, 1) = A016777(n-1).
T(n, 2) = A062741(n-1).
T(n, 3) = 9*A002411(n-2).
T(n, 4) = 27*A001296(n-3).
T(n, 5) = 81*A051836(n-4).
T(n, n) = A133494(n).
T(n, n-1) = A006234(n+2).
T(n, n-2) = A080420(n-2).
T(n, n-3) = A080421(n-3).
T(n, n-4) = A080422(n-4).
T(n, n-5) = A080423(n-5).
T(2*n, n) = 4*A098399(n-1) + (2/3)*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006138(n-1) + (2/3)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A110523(n-1) + (4/3)*[n=0]. (End)
EXAMPLE
Triangle begins:
1;
1, 1;
1, 4, 3;
1, 7, 15, 9;
1, 10, 36, 54, 27;
1, 13, 66, 162, 189, 81;
1, 16, 105, 360, 675, 648, 243;
1, 19, 153, 675, 1755, 2673, 2187, 729;
MATHEMATICA
A038763[n_, k_]:= If[n==0, 1, 3^(k-1)*(3*n-2*k)*Binomial[n, k]/n];
Table[A038763[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 27 2023 *)
PROG
(PARI) T(n, k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); T(n-1, k) + 3*T(n-1, k-1);
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Jul 25 2023
(Magma)
A038763:= func< n, k | n eq 0 select 1 else 3^(k-1)*(3*n-2*k)*Binomial(n, k)/n >;
[A038763(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 27 2023
(SageMath)
def A038763(n, k): return 1 if (n==0) else 3^(k-1)*(3*n-2*k)*binomial(n, k)/n
flatten([[A038763(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 27 2023
KEYWORD
tabl,nonn,easy
AUTHOR
N. J. A. Sloane, May 03 2000
EXTENSIONS
More terms from Michel Marcus, Jul 25 2023
STATUS
approved