OFFSET
0,5
COMMENTS
Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
Triangle read by rows, n-th row = X^(n-1) * [1, 1, 0, 0, 0, ...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (3,3,3,...) in the subdiagonal; given row 0 = 1. - Gary W. Adamson, Jul 19 2008
Fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(2x+1)^n; see A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. - Clark Kimberling, Aug 04 2011
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
FORMULA
T(n, 0)=1; T(1, 1)=1; T(n, k)=0 for k>n; T(n, k) = T(n-1, k-1)*3 + T(n-1, k) for n >= 2.
Sum_{k=0..n} T(n,k) = A081294(n). - Philippe Deléham, Sep 22 2006
T(n, k) = A136158(n, n-k). - Philippe Deléham, Dec 17 2007
G.f.: (1-2*x*y)/(1-(3*y+1)*x). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 27 2023: (Start)
T(n, 0) = A000012(n).
T(n, 1) = A016777(n-1).
T(n, 2) = A062741(n-1).
T(n, 3) = 9*A002411(n-2).
T(n, 4) = 27*A001296(n-3).
T(n, 5) = 81*A051836(n-4).
T(n, n) = A133494(n).
T(n, n-1) = A006234(n+2).
T(n, n-2) = A080420(n-2).
T(n, n-3) = A080421(n-3).
T(n, n-4) = A080422(n-4).
T(n, n-5) = A080423(n-5).
T(2*n, n) = 4*A098399(n-1) + (2/3)*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006138(n-1) + (2/3)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A110523(n-1) + (4/3)*[n=0]. (End)
EXAMPLE
Triangle begins:
1;
1, 1;
1, 4, 3;
1, 7, 15, 9;
1, 10, 36, 54, 27;
1, 13, 66, 162, 189, 81;
1, 16, 105, 360, 675, 648, 243;
1, 19, 153, 675, 1755, 2673, 2187, 729;
MATHEMATICA
A038763[n_, k_]:= If[n==0, 1, 3^(k-1)*(3*n-2*k)*Binomial[n, k]/n];
Table[A038763[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 27 2023 *)
PROG
(PARI) T(n, k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); T(n-1, k) + 3*T(n-1, k-1);
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Jul 25 2023
(Magma)
A038763:= func< n, k | n eq 0 select 1 else 3^(k-1)*(3*n-2*k)*Binomial(n, k)/n >;
[A038763(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 27 2023
(SageMath)
def A038763(n, k): return 1 if (n==0) else 3^(k-1)*(3*n-2*k)*binomial(n, k)/n
flatten([[A038763(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 27 2023
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, May 03 2000
EXTENSIONS
More terms from Michel Marcus, Jul 25 2023
STATUS
approved