login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098399
a(n) = 3^n*binomial(2*n+1, n).
5
1, 9, 90, 945, 10206, 112266, 1250964, 14073345, 159497910, 1818276174, 20827527084, 239516561466, 2763652632300, 31979409030900, 370961144758440, 4312423307816865, 50227047938102310, 585982225944526950, 6846739692614999100, 80106854403595489470, 938394580156404305220
OFFSET
0,2
LINKS
FORMULA
G.f.: (1-sqrt(1-12*x))/(6*x*sqrt(1-12*x)).
E.g.f.: a(n) = n!* [x^n] exp(6*x)*(BesselI(0, 6*x) + BesselI(1, 6*x)). - Peter Luschny, Aug 25 2012
(n+1)*a(n) - 6*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 24 2012
From G. C. Greubel, Dec 27 2023: (Start)
a(n) = 3^n * (2*n+1)*A000108(n).
a(n) = (2*n+1)*A005159(n).
a(n) = 3^n * A001700(n). (End)
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 6/11 + 72*arcsin(1/(2*sqrt(3)))/(11*sqrt(11)).
Sum_{n>=0} (-1)^n/a(n) = 6/13 + 72*arcsinh(1/(2*sqrt(3)))/(13*sqrt(13)). (End)
MAPLE
Z:=(1-sqrt(1-3*z))*4^n/sqrt(1-3*z)/6: Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..18); # Zerinvary Lajos, Jan 01 2007
MATHEMATICA
Table[3^n Binomial[2n+1, n], {n, 0, 20}] (* Harvey P. Dale, Mar 28 2012 *)
PROG
(Magma) [3^n*Binomial(2*n+1, n): n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
(PARI) a(n)=binomial(2*n+1, n)*3^n \\ Charles R Greathouse IV, Oct 23 2023
(SageMath) [3^n*binomial(2*n+1, n) for n in range(21)] # G. C. Greubel, Dec 27 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 06 2004
STATUS
approved