|
|
A005159
|
|
a(n) = 3^n*Catalan(n).
|
|
29
|
|
|
1, 3, 18, 135, 1134, 10206, 96228, 938223, 9382230, 95698746, 991787004, 10413763542, 110546105292, 1184422556700, 12791763612360, 139110429284415, 1522031755700070, 16742349312700770, 185047018719324300, 2054021907784499730
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Total number of vertices in rooted planar maps with n edges.
Number of blossom trees with n inner vertices.
The number of rooted n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005
Also the number of strings of length 2*n of three different types of balanced parentheses.
The number of strings of length 2*n of t different types of balanced parentheses is given by t^n * A000108(n): there are n opening parentheses in the strings, giving t^n choices for the type (the closing parentheses are chosen to match). (End)
Number of unknown entries in bracketed Kleene’s truth table connected by the implication with n distinct variables. See Yildiz link. - Michel Marcus, Oct 21 2020
|
|
REFERENCES
|
Leonid M. Koganov, Valery A. Liskovets and Timothy R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin., Vol. 54 (2000), pp. 149-160.
Valery A. Liskovets and Timothy R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
Richard P. Stanley, Catalan Numbers, Cambridge, 2015, p. 107.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 2/(1+sqrt(1-12x)) = (1 - sqrt(1-4*(3*x))) / (6*x).
With offset 1 : a(1)=1, a(n) = 3*Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
G.f.: c(3*x) with c(x) the o.g.f. of A000108 (Catalan).
a(n) is the upper left term in M^n, M = the infinite square production matrix:
3, 3, 0, 0, 0, 0, ...
3, 3, 3, 0, 0, 0, ...
3, 3, 3, 3, 0, 0, ...
3, 3, 3, 3, 3, 0, ...
3, 3, 3, 3, 3, 3, ...
... (End)
D-finite with recurrence (n+1)*a(n)+6*(1-2n)*a(n-1)=0. - R. J. Mathar, Apr 01 2012
E.g.f.: a(n) = n!* [x^n] KummerM(1/2, 2, 12*x). - Peter Luschny, Aug 25 2012
E.g.f.: (BesselI(0,6*x) - BesselI(1,6*x))*exp(6*x).
a(n) ~ 12^n/(sqrt(Pi)*n^(3/2)). (End)
Sum_{n>=0} 1/a(n) = 150/121 + 216*arctan(1/sqrt(11)) / (121*sqrt(11)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 138/169 - 216*arctanh(1/sqrt(13)) / (169*sqrt(13)). - Amiram Eldar, Jan 25 2022
G.f.: 1/(1-3*x/(1-3*x/(1-3*x/(1-3*x/(1-3*x/(1-3*x/(1-3*x/(1-3*x/(1-...)))))))) (continued fraction). - Nikolaos Pantelidis, Nov 20 2022
|
|
MAPLE
|
A005159_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 3*(a[w-1]+add(a[j]*a[w-j-1], j=1..w-1)) od; convert(a, list)end: A005159_list(19); # Peter Luschny, May 19 2011
|
|
MATHEMATICA
|
InverseSeries[Series[y-3*y^2, {y, 0, 24}], x] (* then A(x)=y(x)/x *) (* Len Smiley, Apr 07 2000 *)
Table[3^n CatalanNumber[n], {n, 0, 30}] (* Harvey P. Dale, May 18 2011 *)
CoefficientList[Series[(1 - Sqrt[1-4*(3*x)])/(6*x), {x, 0, 50}], x] (* Stefano Spezia, Oct 16 2018 *)
|
|
PROG
|
(GAP) List([0..20], n->3^n*Binomial(2*n, n)/(n+1)); # Muniru A Asiru, Mar 30 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|