|
|
A025226
|
|
a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 2. Also a(n) = 3^n*C(n-1), where C = A000108 (Catalan numbers).
|
|
6
|
|
|
3, 9, 54, 405, 3402, 30618, 288684, 2814669, 28146690, 287096238, 2975361012, 31241290626, 331638315876, 3553267670100, 38375290837080, 417331287853245, 4566095267100210
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Total number of rows in all Kleene truth tables for bracketed implication with n distinct variables. See Yildiz link. - Michel Marcus, Oct 21 2020
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{j=1..n-1} a(j)*a(n-j), with a(1) = 3.
Given g.f. C(x) and given A(x)= g.f. of A100239, then B(x) = A(x) - (1+2*x) satisfies B(x) = x - C(x*B(x)). - Michael Somos, Sep 07 2005
G.f.: (1 - U(0))/x where U(k)= 1 - 3*x/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 30 2012
D-finite with recurrence: n*a(n) +6*(3-2*n)*a(n-1) = 0. - R. J. Mathar, Nov 12 2012
|
|
EXAMPLE
|
a(3) = 3^3*C(2) = 27*2 = 54.
|
|
MATHEMATICA
|
Rest[CoefficientList[Series[(1-Sqrt[1-12x])/2, {x, 0, 20}], x]] (* Harvey P. Dale, Mar 09 2011 *)
|
|
PROG
|
(PARI) a(n)=polcoeff((1-sqrt(1-12*x+x*O(x^n)))/2, n)
(Magma) [3^n*Catalan(n-1): n in [1..30]]; // G. C. Greubel, May 20 2022
(SageMath) [3^n*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, May 20 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|