OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
FORMULA
G.f.: (1-sqrt(1-4*x-8*x^2))/2. - Michael Somos, Jun 08 2000
a(n) = Sum_{k=0..n} 2^(n-k)*C(k)*C(k+1, n-k) [offset 0]. - Paul Barry, Feb 22 2005
Another recurrence formula: n*a(n) = (4*n-6)*a(n-1)+(8*n-24)*a(n-2). - Richard Choulet, Dec 16 2009
a(n) ~ sqrt(3-sqrt(3))*(2+2*sqrt(3))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012
MAPLE
A025229 := proc(n)
option remember;
if n <=1 then
n;
elif n = 2 then
3;
else
add( procname(n-i)*procname(i), i=1..n-1) ;
end if;
end proc: # R. J. Mathar, Jun 17 2015
MATHEMATICA
Table[SeriesCoefficient[(1-Sqrt[1-4*x-8*x^2])/2, {x, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 07 2012 *)
PROG
(PARI) a(n)=polcoeff((1-sqrt(1-4*x-8*x^2+x*O(x^n)))/2, n)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved