login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005156
Number of alternating sign 2n+1 X 2n+1 matrices symmetric about the vertical axis (VSASM's); also 2n X 2n off-diagonally symmetric alternating sign matrices (OSASM's).
(Formerly M3115)
14
1, 1, 3, 26, 646, 45885, 9304650, 5382618660, 8878734657276, 41748486581283118, 559463042542694360707, 21363742267675013243931852, 2324392978926652820310084179576, 720494439459132215692530771292602232, 636225819409712640497085074811372777428304
OFFSET
0,3
COMMENTS
a(n+1) is the Hankel transform of A006013. - Paul Barry, Jan 20 2007
a(n+1) is the Hankel transform of A025174(n+1). - Paul Barry, Apr 14 2008
REFERENCES
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 201, VS(2n+1).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
M. T. Batchelor, J. de Gier and B. Nienhuis, The quantum symmetric XXZ chain at Delta=-1/2, alternating sign matrices and plane partitions, arXiv:cond-mat/0101385 [cond-mat.stat-mech], 2001, (see A_V(2n+1)).
N. T. Cameron, Random walks, trees and extensions of Riordan group techniques, Dissertation, Howard University, 2002.
J. de Gier, Loops, matchings and alternating-sign matrices, arXiv:math/0211285 [math.CO], 2002-2003.
I. Fischer, The number of monotone triangles with prescribed bottom row, arXiv:math/0501102 [math.CO], 2005.
I. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005.
W. Hebsich and M. Rubey, Extended Rate, More Gfun, arXiv:math/0702086 [math.CO], 2007. [See p. 23.]
G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv:math/0008184 [math.CO], 2000-2001, (see A_V(2n+1)).
A. V. Razumov and Yu. G. Stroganov, On refined enumerations of some symmetry classes of alternating sign matrices, arXiv:math-ph/0312071, 2003.
D. P. Robbins, Symmetry classes of alternating sign matrices, arXiv:math/0008045 [math.CO], 2000.
R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986. Preprint. [Annotated scanned copy]
FORMULA
The formula for a(n) (see the Maple code) was conjectured by Robbins and proved by Kuperberg.
a(n) = (1/2^n) * Product_{k=1..n} ((6k-2)!(2k-1)!)/((4k-1)!(4k-2)!) (Razumov/Stroganov).
a(n) ~ exp(1/72) * Pi^(1/6) * 3^(3*n^2 + 3*n/2 + 11/72) / (A^(1/6) * GAMMA(1/3)^(1/3) * n^(5/72) * 2^(4*n^2 + 3*n + 1/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015
MAPLE
A005156 := proc(n) local i, j, t1; (-3)^(n^2)*mul( mul( (6*j-3*i+1)/(2*j-i+2*n+1), j=1..n ), i=1..2*n+1); end;
MATHEMATICA
Table[1/2^n Product[((6k-2)!(2k-1)!)/((4k-1)!(4k-2)!), {k, n}], {n, 0, 20}] (* Harvey P. Dale, Jul 07 2011 *)
PROG
(PARI) a(n) = prod(k = 0, n-1, (3*k+2)*(6*k+3)!*(2*k+1)!/((4*k+2)!*(4*k+3)!));
vector(15, n, a(n-1)) \\ Gheorghe Coserea, May 30 2016
CROSSREFS
Sequence in context: A064941 A112612 A129430 * A355120 A101613 A280222
KEYWORD
nonn,nice,easy
STATUS
approved