login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280222
a(n) = (-3)^(n-1)*a(n-1) + a(n-2).
6
0, 1, -3, -26, 699, 56593, -13751400, -10024714007, 21924035781909, 143843588740390942, -2831273335253079129477, -167183859029515480776096431, 29616119072670305537790075332880, 15739219935931795986279179944204983649, -25093400345884972653159910700646932070891747
OFFSET
0,3
LINKS
EXAMPLE
G.f. = x - 3*x^2 - 26*x^3 + 699*x^4 + 56593*x^5 - 13751400*x^6 + ...
MATHEMATICA
a[n_] := (-3)^(n -1) a[n -1] + a[n -2]; a[0] = 0; a[1] = 1; Array[a, 15, 0] (* Robert G. Wilson v, Dec 29 2016 *)
nxt[{n_, a_, b_}]:={n+1, b, b*(-3)^n+a}; NestList[nxt, {1, 0, 1}, 20][[All, 2]] (* Harvey P. Dale, Jul 09 2018 *)
PROG
(Ruby)
def A(m, n)
i, a, b = 0, 0, 1
ary = [0]
while i < n
i += 1
a, b = b, b * m ** i + a
ary << a
end
ary
end
def A280222(n)
A(-3, n)
end
(PARI) m=20; v=concat([1, -3], vector(m-2)); for(n=3, m, v[n] = (-3)^(n-1)*v[n-1] + v[n-2]); concat([0], v) \\ G. C. Greubel, Oct 13 2018
(Magma) I:=[1, -3]; [0] cat [n le 2 select I[n] else (-3)^(n-1)*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Oct 13 2018
(GAP) a:=[1, -3];; for n in [3..15] do a[n]:=(-3)^(n-1)*a[n-1]+a[n-2]; od; Concatenation([0], a); # Muniru A Asiru, Oct 19 2018
CROSSREFS
Cf. similar sequences with the recurrence q^(n-1)*a(n-1) + a(n-2) for n>1, a(0)=0 and a(1)=1: this sequence (q=-3), A280221 (q=-2), A280261 (q=-1), A000045 (q=1), A015473 (q=2), A015474 (q=3), A015475 (q=4), A015476 (q=5), A015477 (q=6), A015479 (q=7), A015480 (q=8), A015481 (q=9), A015482 (q=10), A015484 (q=11).
Sequence in context: A005156 A355120 A101613 * A354652 A174811 A214808
KEYWORD
sign
AUTHOR
Seiichi Manyama, Dec 29 2016
STATUS
approved