login
A280220
a(1) = 1, a(n+1) is the numerator of n-th partial fraction of the continued fraction [1; 4, 16, 64, ..., 4^n].
3
1, 5, 81, 5189, 1328465, 1360353349, 5572008645969, 91291791015909445, 5982898821590650033489, 1568381028778351153394849861, 1644566705638271237843748737881425, 6897812711726991987001765057444407253061, 115726093792191122162903443021235072225308939601
OFFSET
1,2
LINKS
FORMULA
a(n) = 4^(n-1)*a(n-1) + a(n-2).
EXAMPLE
G.f. = x + 5*x^2 + 81*x^3 + 5189*x^4 + 1328465*x^5 + 1360353349*x^6 + ...
a(3) = 81, the numerator of 1 + 1/(4 + 1/16) = 81/65.
MATHEMATICA
f[n_] := Numerator[ FromContinuedFraction[ Reverse[4^Range[0, n -1]] ]]; Array[f, 12] (* Robert G. Wilson v, Dec 29 2016 *)
CROSSREFS
Denominators are in A015475.
Sequence in context: A165435 A197443 A337852 * A280675 A209102 A374615
KEYWORD
nonn,frac
AUTHOR
Seiichi Manyama, Dec 29 2016
STATUS
approved