The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061377 a(1) = 1, a(n+1) = numerator of the continued fraction [1; 2, 4, 8, ..., 2^n]. 5
 1, 3, 13, 107, 1725, 55307, 3541373, 453351051, 116061410429, 59423895490699, 60850185043886205, 124621238393774438539, 510448653311085144141949, 4181595492545647894585284747, 68511261060316548415970449436797 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..82 FORMULA a(n) = 2^(n-1)*a(n-1) + a(n-2). - Orson R. L. Peters, Dec 28 2016 0 = a(n)*(-2*a(n+2)) + a(n+1)*(+a(n+1) - a(n+3)) + a(n+2)*(+2*a(n+2)) if n>0. - Michael Somos, Dec 28 2016 EXAMPLE G.f. = x + 3*x^2 + 13*x^3 + 107*x^4 + 1725*x^5 + 55307*x^6 + 3541373*x^7 + ... a(3) = 13, the numerator of 1 + 1/(2 + 1/4) = 13/9. MAPLE with(numtheory); f := n->numer(cfrac([seq (2^i, i=0..n)])); for n from 0 to 25 do printf("%d, ", f(n)) od; MATHEMATICA Module[{nn=20, c}, c=2^Range[0, nn]; Table[Numerator[ FromContinuedFraction[ Take[ c, n]]], {n, nn}]] (* Harvey P. Dale, Jun 04 2014 *) PROG (PARI) {a(n) = if( n<1, 0, n<3, 2*n-1, 2^(n-1)*a(n-1) + a(n-2))}; /* Michael Somos, Dec 28 2016 */ CROSSREFS Denominators are sequence A015473. Sequence in context: A337869 A333736 A220704 * A183604 A228563 A222863 Adjacent sequences:  A061374 A061375 A061376 * A061378 A061379 A061380 KEYWORD nonn,easy,frac AUTHOR Amarnath Murthy, May 02 2001 EXTENSIONS More terms from Larry Reeves (larryr(AT)acm.org) and Winston C. Yang (winston(AT)cs.wisc.edu), May 15 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 20:25 EDT 2021. Contains 345009 sequences. (Running on oeis4.)