login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015473
q-Fibonacci numbers for q=2.
18
0, 1, 2, 9, 74, 1193, 38250, 2449193, 313534954, 80267397417, 41097221012458, 42083634584154409, 86187324725569242090, 353023324159566199755049, 2891967157702491033962603498, 47381990264820937260009495466281
OFFSET
0,3
COMMENTS
a(1) = 1, a(n+1) = denominator of continued fraction [1;2,4,8,...,2^n]. - Amarnath Murthy, May 02 2001
The difference equation y(n, x, s) = q^(n-1)*x*y(n-1, x, s) + s*y(n-2, x, s) yields a type of two variable q-Fibonacci polynomials in the form F(n, x, s, q) = Sum_{j=0..floor((n-1)/2)} q-binomial(n-j-1,j, q^2)*q^binomial(n-2*j,2)* x^(n-2*j)*s^j. When x=s=1 these polynomials reduce to q-Fibonacci numbers. This family of q-Fibonacci numbers is different from that of the q-Fibonacci numbers defined in A015459. - G. C. Greubel, Dec 17 2019
LINKS
FORMULA
a(n) = 2^(n-1)*a(n-1) + a(n-2).
MAPLE
q:=2; seq(add((product((1-q^(2*(n-j-1-k)))/(1-q^(2*k+2)), k=0..j-1))* q^binomial(n-2*j, 2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 17 2019
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]*2^(n-1)+a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Nov 09 2012 *)
Join[{0}, Denominator[Table[FromContinuedFraction[2^Range[0, n]], {n, 0, 20}]]] (* Harvey P. Dale, Feb 09 2013 *)
F[n_, q_]:= Sum[QBinomial[n-j-1, j, q^2]*q^Binomial[n-2*j, 2], {j, 0, Floor[(n-1)/2] }]; Table[F[n, 2], {n, 0, 20}] (* G. C. Greubel, Dec 17 2019 *)
PROG
(Magma) [0] cat [n le 2 select n else 2^(n-1)*Self(n-1) + Self(n-2): n in [1..16]]; // Vincenzo Librandi, Nov 09 2012
(PARI) q=2; m=20; v=concat([0, 1], vector(m-2)); for(n=3, m, v[n]=q^(n-2)*v[n-1]+v[n-2]); v \\ G. C. Greubel, Dec 17 2019
(Sage)
def F(n, q): return sum( q_binomial(n-j-1, j, q^2)*q^binomial(n-2*j, 2) for j in (0..floor((n-1)/2)))
[F(n, 2) for n in (0..20)] # G. C. Greubel, Dec 17 2019
(GAP) q:=2;; a:=[0, 1];; for n in [3..20] do a[n]:=q^(n-2)*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 17 2019
CROSSREFS
Cf. A061377.
q-Fibonacci numbers: A000045 (q=1), this sequence (q=2), A015474 (q=3), A015475 (q=4), A015476 (q=5), A015477 (q=6), A015479 (q=7), A015480 (q=8), A015481 (q=9), A015482 (q=10), A015484 (q=11), A015485 (q=12).
Sequence in context: A084873 A332722 A103996 * A029849 A288581 A197082
KEYWORD
nonn,easy
STATUS
approved