login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332722
Index position of [2n-1, 2n-3, ..., 3, 1] within the list of partitions of n^2 in canonical ordering.
1
1, 1, 2, 9, 74, 711, 7312, 77793, 848557, 9426039, 106218592, 1210785512, 13933358426, 161624712815, 1887635428421, 22176331059637, 261881397819259, 3106736469937751, 37006306302036790, 442425926101676831, 5306994321265281854, 63851605555921588684, 770371217568310624912
OFFSET
0,3
COMMENTS
The canonical ordering of partitions is described in A080577.
LINKS
EXAMPLE
a(3) = 9, because 531 has position 9 within the list of partitions of 3*3 in canonical ordering: 9, 81, 72, 711, 63, 621, 6111, 54, 531, ... .
MAPLE
b:= proc(n, i) option remember;
`if`(n=0, 1, b(n-i, i-2)+g(n, i-1))
end:
g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
`if`(i<1, 0, g(n-i, min(n-i, i))+g(n, i-1)))
end:
a:= n-> g(n^2$2)-b(n^2, 2*n-1)+1:
seq(a(n), n=0..23);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, b[n - i, i - 2] + g[n, i - 1]];
g[n_, i_] := g[n, i] = If[n == 0 || i == 1, 1, If[i < 1, 0, g[n - i, Min[n - i, i]] + g[n, i - 1]]];
a[n_] := g[n^2, n^2] - b[n^2, 2n - 1] + 1;
a /@ Range[0, 23] (* Jean-François Alcover, May 10 2020, after Maple *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 20 2020
STATUS
approved