login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332724
Number of length n - 1 ordered set partitions of {1..n} where no element of any block is greater than any element of a non-adjacent consecutive block.
6
0, 0, 1, 6, 14, 32, 65, 128, 243, 452, 826, 1490, 2659, 4704, 8261, 14418, 25030, 43252, 74437, 127648, 218199, 371920, 632306, 1072486, 1815239, 3066432, 5170825, 8705118, 14632958, 24562952, 41177801, 68947520, 115313979, 192656924, 321554986, 536191418
OFFSET
0,4
COMMENTS
In other words, parts of not-immediately-subsequent blocks are increasing.
FORMULA
From Andrew Howroyd, Apr 17 2021: (Start)
a(n) = A001629(n) + 4*A001629(n+1) + A001629(n+2) for n > 0.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n > 4.
G.f.: x*(1 + 4*x + x^2)/(1 - x - x^2)^2.
(End)
EXAMPLE
The a(2) = 1 through a(4) = 14 ordered set partitions:
{{1,2}} {{1},{2,3}} {{1},{2},{3,4}}
{{1,2},{3}} {{1},{2,3},{4}}
{{1,3},{2}} {{1,2},{3},{4}}
{{2},{1,3}} {{1},{2,4},{3}}
{{2,3},{1}} {{1,2},{4},{3}}
{{3},{1,2}} {{1},{3},{2,4}}
{{1,3},{2},{4}}
{{1},{3,4},{2}}
{{1},{4},{2,3}}
{{2},{1},{3,4}}
{{2},{1,3},{4}}
{{2},{1,4},{3}}
{{2,3},{1},{4}}
{{3},{1,2},{4}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Length[Select[Join@@Permutations/@sps[Range[n]], Length[#]==n-1&&!MatchQ[#, {___, {___, a_, ___}, __, {___, b_, ___}, ___}/; a>b]&]], {n, 0, 8}]
PROG
(PARI) \\ here b(n) is A001629(n).
b(n) = {((n+1)*fibonacci(n-1) + (n-1)*fibonacci(n+1))/5}
a(n) = {if(n==0, 0, b(n) + 4*b(n-1) + b(n-2))} \\ Andrew Howroyd, Apr 17 2021
CROSSREFS
Column k = n - 1 of A332673, which has row-sums A332872.
Ordered set-partitions are A000670.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Non-unimodal normal sequences are A328509.
Sequence in context: A271996 A199705 A225972 * A078836 A340735 A142875
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 03 2020
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Apr 17 2021
STATUS
approved