login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271996 The crystallogen sequence (a(n) = A018227(n)-4). 2
6, 14, 32, 50, 82, 114, 164, 214, 286, 358, 456, 554, 682, 810, 972, 1134, 1334, 1534, 1776, 2018, 2306, 2594, 2932, 3270, 3662, 4054, 4504, 4954, 5466, 5978, 6556, 7134, 7782, 8430, 9152, 9874, 10674, 11474, 12356, 13238, 14206, 15174, 16232, 17290, 18442 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Terms up to 114 are the atomic numbers of the elements of group 14 in the periodic table. Those elements are also called crystallogens.

LINKS

Colin Barker, Table of n, a(n) for n = 2..1000

Wikipedia, Carbon group.

Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).

FORMULA

From Colin Barker, Jun 19 2016: (Start)

a(n) = (6*(-9 + (-1)^n) + (25 + 3*(-1)^n)*n + 12*n^2 + 2*n^3)/12.

a(n) = (n^3 + 6*n^2 + 14*n - 24)/6 for n even.

a(n) = (n^3 + 6*n^2 + 11*n - 30)/6 for n odd.

a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>7.

G.f.: 2*x^2*(3 + x - x^2 - 2*x^3 + x^5) / ((1-x)^4*(1+x)^2).

(End)

MATHEMATICA

Table[(6*(-9+(-1)^n)+(25+3*(-1)^n)*n+12*n^2+2*n^3)/12, {n, 2, 10}] (* or *) LinearRecurrence[{2, 1, -4, 1, 2, -1}, {6, 14, 32, 50, 82, 114}, 50] (* G. C. Greubel, Jun 23 2016 *)

PROG

(PARI) Vec(2*x^2*(3+x-x^2-2*x^3+x^5)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jun 19 2016

CROSSREFS

Cf. A173592, A018227.

Sequence in context: A134067 A024932 A273365 * A199705 A225972 A078836

Adjacent sequences:  A271993 A271994 A271995 * A271997 A271998 A271999

KEYWORD

nonn,easy

AUTHOR

Natan Arie' Consigli, Jun 18 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 13:59 EST 2017. Contains 294972 sequences.