Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Apr 17 2021 18:13:56
%S 0,0,1,6,14,32,65,128,243,452,826,1490,2659,4704,8261,14418,25030,
%T 43252,74437,127648,218199,371920,632306,1072486,1815239,3066432,
%U 5170825,8705118,14632958,24562952,41177801,68947520,115313979,192656924,321554986,536191418
%N Number of length n - 1 ordered set partitions of {1..n} where no element of any block is greater than any element of a non-adjacent consecutive block.
%C In other words, parts of not-immediately-subsequent blocks are increasing.
%H Andrew Howroyd, <a href="/A332724/b332724.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2,-1).
%F From _Andrew Howroyd_, Apr 17 2021: (Start)
%F a(n) = A001629(n) + 4*A001629(n+1) + A001629(n+2) for n > 0.
%F a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n > 4.
%F G.f.: x*(1 + 4*x + x^2)/(1 - x - x^2)^2.
%F (End)
%e The a(2) = 1 through a(4) = 14 ordered set partitions:
%e {{1,2}} {{1},{2,3}} {{1},{2},{3,4}}
%e {{1,2},{3}} {{1},{2,3},{4}}
%e {{1,3},{2}} {{1,2},{3},{4}}
%e {{2},{1,3}} {{1},{2,4},{3}}
%e {{2,3},{1}} {{1,2},{4},{3}}
%e {{3},{1,2}} {{1},{3},{2,4}}
%e {{1,3},{2},{4}}
%e {{1},{3,4},{2}}
%e {{1},{4},{2,3}}
%e {{2},{1},{3,4}}
%e {{2},{1,3},{4}}
%e {{2},{1,4},{3}}
%e {{2,3},{1},{4}}
%e {{3},{1,2},{4}}
%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t Table[Length[Select[Join@@Permutations/@sps[Range[n]],Length[#]==n-1&&!MatchQ[#,{___,{___,a_,___},__,{___,b_,___},___}/;a>b]&]],{n,0,8}]
%o (PARI) \\ here b(n) is A001629(n).
%o b(n) = {((n+1)*fibonacci(n-1) + (n-1)*fibonacci(n+1))/5}
%o a(n) = {if(n==0, 0, b(n) + 4*b(n-1) + b(n-2))} \\ _Andrew Howroyd_, Apr 17 2021
%Y Column k = n - 1 of A332673, which has row-sums A332872.
%Y Ordered set-partitions are A000670.
%Y Unimodal compositions are A001523.
%Y Unimodal normal sequences appear to be A007052.
%Y Non-unimodal normal sequences are A328509.
%Y Cf. A000045, A001286, A001629, A056242, A227038, A332577.
%K nonn
%O 0,4
%A _Gus Wiseman_, Mar 03 2020
%E Terms a(9) and beyond from _Andrew Howroyd_, Apr 17 2021