login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332720
Index position of {3}^n within the list of partitions of 3n in canonical ordering.
2
1, 1, 5, 19, 59, 150, 349, 745, 1515, 2936, 5514, 10036, 17851, 31039, 53006, 88943, 147057, 239701, 385885, 613855, 966137, 1505137, 2323124, 3553914, 5392315, 8117758, 12131618, 18003740, 26543030, 38886999, 56633453, 82009410, 118113488, 169229009, 241264461
OFFSET
0,3
COMMENTS
The canonical ordering of partitions is described in A080577.
LINKS
FORMULA
a(n) ~ exp(Pi*sqrt(2*n)) / (4*3^(3/2)*n). - Vaclav Kotesovec, Feb 28 2020
EXAMPLE
a(2) = 5, because 33 has position 5 within the list of partitions of 6 in canonical ordering: 6, 51, 42, 411, 33, 321, 3111, 222, ... .
MAPLE
b:= proc(n) option remember;
`if`(n=0, 1, b(n-1)+g(3*n, 2))
end:
g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
`if`(i<1, 0, g(n-i, min(n-i, i))+g(n, i-1)))
end:
a:= n-> g(3*n$2)-b(n)+1:
seq(a(n), n=0..35);
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, b[n - 1] + g[3n, 2]];
g[n_, i_] := g[n, i] = If[n == 0 || i == 1, 1, If[i < 1, 0, g[n - i, Min[n - i, i]] + g[n, i - 1]]];
a[n_] := g[3n, 3n] - b[n] + 1;
a /@ Range[0, 35] (* Jean-François Alcover, Jan 06 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 20 2020
STATUS
approved