login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197082
Smallest number with n prime divisors (counted with multiplicity) which is not divisible by a(k) for any k < n.
0
2, 9, 75, 625, 5145, 42875, 352947, 2941225, 28824005, 282475249, 4882786447, 60287465315, 744365643175, 10212696624361, 118890080527911, 1387050939492295, 17125833028425275, 211451611881577375, 2584630720649942503, 30088718564300934153, 351035049916844231785
OFFSET
1,1
COMMENTS
Conjecture: every proper divisor of a member of this sequence divides infinitely many numbers in the sequence.
EXAMPLE
For a(3), there must be 3 prime divisors. 2 cannot be a divisor, and there can be at most one 3 (otherwise a(1) or a(2) would divide it). The smallest product of three primes subject to these constraints is 3*5*5 = 75.
PROG
(PARI)oddfactfollow(n)={local(fm, np, r);
fm=factor(n); np=matsize(fm)[1]; r=[];
if(fm[1, 1]==3, r=concat(r, [n\3*5]);
if(np>1&&fm[2, 2]==1&&primepi(fm[2, 1])<=lim,
r=concat(r, [n\fm[2, 1]*nextprime(fm[2, 1]+1)])),
if(fm[1, 2]==1&&primepi(fm[1, 1])<=lim,
r=concat(r, [n\fm[1, 1]*nextprime(fm[1, 1]+1)]))); r}
anydiv(v, n, x)=for(k=1, n, if(x%v[k]==0, return(1))); 0
al(n) = {local(r, ms); r=vector(n); r[1]=2;
for(k=2, n, ms=[3^k];
while(anydiv(r, k-1, ms[1]),
ms=vecsort(concat(vector(#ms-1, j, ms[j+1]), oddfactfollow(ms[1]))))
r[k]=ms[1]);
r}
CROSSREFS
Cf. A001222.
Sequence in context: A015473 A029849 A288581 * A243054 A080638 A375450
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from D. S. McNeil, Oct 19 2011
STATUS
approved