OFFSET
1,1
COMMENTS
Conjecture: every proper divisor of a member of this sequence divides infinitely many numbers in the sequence.
EXAMPLE
For a(3), there must be 3 prime divisors. 2 cannot be a divisor, and there can be at most one 3 (otherwise a(1) or a(2) would divide it). The smallest product of three primes subject to these constraints is 3*5*5 = 75.
PROG
(PARI)oddfactfollow(n)={local(fm, np, r);
fm=factor(n); np=matsize(fm)[1]; r=[];
if(fm[1, 1]==3, r=concat(r, [n\3*5]);
if(np>1&&fm[2, 2]==1&&primepi(fm[2, 1])<=lim,
r=concat(r, [n\fm[2, 1]*nextprime(fm[2, 1]+1)])),
if(fm[1, 2]==1&&primepi(fm[1, 1])<=lim,
r=concat(r, [n\fm[1, 1]*nextprime(fm[1, 1]+1)]))); r}
anydiv(v, n, x)=for(k=1, n, if(x%v[k]==0, return(1))); 0
al(n) = {local(r, ms); r=vector(n); r[1]=2;
for(k=2, n, ms=[3^k];
while(anydiv(r, k-1, ms[1]),
ms=vecsort(concat(vector(#ms-1, j, ms[j+1]), oddfactfollow(ms[1]))))
r[k]=ms[1]);
r}
CROSSREFS
KEYWORD
nonn
AUTHOR
Franklin T. Adams-Watters, Oct 19 2011
EXTENSIONS
More terms from D. S. McNeil, Oct 19 2011
STATUS
approved