login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197083
Number of solutions to a+b+c = d+e+f with 0 < a <= n, 0 <= b,c,d,e,f <= n.
5
0, 10, 96, 445, 1431, 3681, 8141, 16142, 29466, 50412, 81862, 127347, 191113, 278187, 394443, 546668, 742628, 991134, 1302108, 1686649, 2157099, 2727109, 3411705, 4227354, 5192030, 6325280, 7648290, 9183951, 10956925, 12993711, 15322711, 17974296, 20980872
OFFSET
0,2
COMMENTS
When n < 10, a(n) is the number of six-digit numbers (with digits <= n) that have the property that the sum of the rightmost 3 digits equals the sum of the leftmost 3 digits. Some references call these balanced numbers. [Edited by M. F. Hasler, Mar 11 2013]
FORMULA
G.f.: (x^4 + 19*x^3 + 36*x^2 + 10*x)/(x-1)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5; a(0)=0, a(1)=10, a(2)=96, a(3)=445, a(4)=1431, a(5)=3681.
a(n) = (66*n^5 + 275*n^4 + 440*n^3 + 325*n^2 + 94*n)/120 = n*(n+1)*(66*n^3 + 209*n^2 + 231*n + 94)/120.
EXAMPLE
When n=1, a(n)=10 because there are 10 solutions when viewed as balanced numbers: 111111, 110110, 110101, 110011, 101110, 101101, 101011, 100100, 100010, 100001.
MATHEMATICA
RecurrenceTable[{a[0] == 0, a[1] == 10, a[2] == 96, a[3] == 445, a[4] == 1431, a[5] == 3681, a[n] == 6 a[n - 1] - 15 a[n - 2] + 20 a[n - 3] - 15 a[n - 4] + 6 a[n - 5] - a[n - 6]}, a, {n, 0, 35}]
PROG
(Python)
def A197083(n): return n*(n*(n*(n*(66*n+275)+440)+325)+94)//120 # Chai Wah Wu, May 08 2024
CROSSREFS
Sequence in context: A233738 A277441 A307021 * A197086 A278359 A125945
KEYWORD
nonn,easy
AUTHOR
Bobby Milazzo, Mar 11 2013
STATUS
approved