login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of solutions to a+b+c = d+e+f with 0 < a <= n, 0 <= b,c,d,e,f <= n.
5

%I #59 May 09 2024 10:58:39

%S 0,10,96,445,1431,3681,8141,16142,29466,50412,81862,127347,191113,

%T 278187,394443,546668,742628,991134,1302108,1686649,2157099,2727109,

%U 3411705,4227354,5192030,6325280,7648290,9183951,10956925,12993711,15322711,17974296,20980872

%N Number of solutions to a+b+c = d+e+f with 0 < a <= n, 0 <= b,c,d,e,f <= n.

%C When n < 10, a(n) is the number of six-digit numbers (with digits <= n) that have the property that the sum of the rightmost 3 digits equals the sum of the leftmost 3 digits. Some references call these balanced numbers. [Edited by _M. F. Hasler_, Mar 11 2013]

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F G.f.: (x^4 + 19*x^3 + 36*x^2 + 10*x)/(x-1)^6.

%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5; a(0)=0, a(1)=10, a(2)=96, a(3)=445, a(4)=1431, a(5)=3681.

%F a(n) = (66*n^5 + 275*n^4 + 440*n^3 + 325*n^2 + 94*n)/120 = n*(n+1)*(66*n^3 + 209*n^2 + 231*n + 94)/120.

%e When n=1, a(n)=10 because there are 10 solutions when viewed as balanced numbers: 111111, 110110, 110101, 110011, 101110, 101101, 101011, 100100, 100010, 100001.

%t RecurrenceTable[{a[0] == 0, a[1] == 10, a[2] == 96, a[3] == 445, a[4] == 1431, a[5] == 3681, a[n] == 6 a[n - 1] - 15 a[n - 2] + 20 a[n - 3] - 15 a[n - 4] + 6 a[n - 5] - a[n - 6]}, a, {n, 0, 35}]

%o (Python)

%o def A197083(n): return n*(n*(n*(n*(66*n+275)+440)+325)+94)//120 # _Chai Wah Wu_, May 08 2024

%K nonn,easy

%O 0,2

%A _Bobby Milazzo_, Mar 11 2013