OFFSET
0,2
COMMENTS
A lower bound for maximal number of stable matchings (or marriages) possible with 2^n men and 2^n women for suitable preference ordering.
REFERENCES
D. Gusfield and R. W. Irving, The Stable Marriage Problem: Structure and Algorithms. MIT Press, 1989, p. 25.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. W. Irving and P. Leather, The complexity of counting stable marriages, SIAM J. Computing 15 (1986), 655-667. [The sequence is v_n =g(2^n), where g(n) appears on page p. 657.]
Anna R. Karlin, Shayan Oveis Gharan, and Robbie Weber, A Simply Exponential Upper Bound on the Maximum Number of Stable Matchings, arXiv:1711.01032 [cs.DM], 2017.
Anna R. Karlin, Shayan Oveis Gharan, and Robbie Weber, A Simply Exponential Upper Bound on the Maximum Number of Stable Matchings, STOC 2018: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, June 2018, pp. 920-925.
D. E. Knuth, Mariages Stables, Presses Univ. de Montréal, 1976 (gives 10 matchings illustrating a(2)).
J. C. Lagarias, J. H. Spencer and J. P. Vinson, Counting dyadic equipartitions of the unit square, Discrete Math. 257 (2002), 481-499.
Clayton Thomas, A recurrence giving a lower bound for stable matchings (analysis of the asymptotic behavior of a_n, with proof due to Peter Shor)
E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219 (see Eq. (1)).
FORMULA
a(n) ~ r*s^(2^n), where r = (sqrt(3)-1)/2 = 0.366025... and s = 2.28014... . - Clayton Thomas, Aug 09 2019
The Karlin, Gharan, Weber upper bound is C^(2^n) for a large C. - Domotor Palvolgyi, Feb 09 2020
MAPLE
MATHEMATICA
RecurrenceTable[{a[0]==1, a[1]==2, a[n]==3a[n-1]^2-2a[n-2]^4}, a, {n, 8}] (* Harvey P. Dale, Mar 19 2012 *)
PROG
(Magma) I:=[1, 2]; [m le 2 select I[m] else 3*Self(m-1)^2-2*Self(m-2)^4: m in [1..9]]; // Marius A. Burtea, Aug 09 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Formula and comment swapped by N. J. A. Sloane, Mar 01 2020
STATUS
approved