The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206158 a(n) = Sum_{k=0..n} binomial(n,k)^(2*k+1). 4
 1, 2, 10, 272, 24226, 12053252, 40086916024, 429254371605824, 23527609330364490754, 10714627376371224032350052, 16964729291782419425708732425300, 109783535843179466164398767001178968704, 6782057095273243388704415924996348722446049600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ignoring initial term a(0), equals the logarithmic derivative of A206157. LINKS Table of n, a(n) for n=0..12. FORMULA Limit n->infinity a(n)^(1/n^2) = r^(2*r^2/(1-2*r)) = 2.3520150420944489879258119..., where r = 0.70350607643066243... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Mar 03 2014 EXAMPLE L.g.f.: L(x) = 2*x + 10*x^2/2 + 272*x^3/3 + 24226*x^4/4 + 12053252*x^5/5 +... where exponentiation yields A206157: exp(L(x)) = 1 + 2*x + 7*x^2 + 102*x^3 + 6261*x^4 + 2423430*x^5 + 6686021554*x^6 +... Illustration of initial terms: a(1) = 1^1 + 1^3 = 2; a(2) = 1^1 + 2^3 + 1^5 = 10; a(3) = 1^1 + 3^3 + 3^5 + 1^7 = 272; a(4) = 1^1 + 4^3 + 6^5 + 4^7 + 1^9 = 24226; a(5) = 1^1 + 5^3 + 10^5 + 10^7 + 5^9 + 1^11 = 12053252; ... MATHEMATICA Table[Sum[Binomial[n, k]^(2*k+1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *) PROG (PARI) {a(n)=sum(k=0, n, binomial(n, k)^(2*k+1))} for(n=0, 16, print1(a(n), ", ")) CROSSREFS Cf. A206157 (exp), A184731, A206154, A206156, A206152, A220359. Sequence in context: A134473 A005154 A074056 * A144288 A215286 A260231 Adjacent sequences: A206155 A206156 A206157 * A206159 A206160 A206161 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 15:58 EDT 2024. Contains 372800 sequences. (Running on oeis4.)