login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206152
a(n) = Sum_{k=0..n} binomial(n,k)^(n+k).
7
1, 2, 10, 326, 64066, 111968752, 1091576358244, 106664423412770932, 67305628532703785062402, 329378455047908259704557301276, 15577435010841058543979449475481629020, 4149966977623235242137197627437116176363522092
OFFSET
0,2
COMMENTS
Ignoring initial term, equals the logarithmic derivative of A206151.
LINKS
FORMULA
Limit n->infinity a(n)^(1/n^2) = r^(-(1+r)^2/(2*r)) = 2.93544172048274005711865243..., where r = 0.6032326837741362... (see A237421) is the root of the equation (1-r)^(2*r) = r^(2*r+1). - Vaclav Kotesovec, Mar 03 2014
EXAMPLE
L.g.f.: L(x) = 2*x + 10*x^2/2 + 326*x^3/3 + 64066*x^4/4 + 111968752*x^5/5 +...
where exponentiation yields A206151:
exp(L(x)) = 1 + 2*x + 7*x^2 + 120*x^3 + 16257*x^4 + 22426576*x^5 +...
Illustration of initial terms:
a(1) = 1^1 + 1^2 = 2;
a(2) = 1^2 + 2^3 + 1^4 = 10;
a(3) = 1^3 + 3^4 + 3^5 + 1^6 = 326;
a(4) = 1^4 + 4^5 + 6^6 + 4^7 + 1^8 = 64066; ...
MATHEMATICA
Table[Sum[Binomial[n, k]^(n+k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)^(n+k))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved