OFFSET
0,2
COMMENTS
Ignoring initial term, equals the logarithmic derivative of A206151.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..47
FORMULA
Limit n->infinity a(n)^(1/n^2) = r^(-(1+r)^2/(2*r)) = 2.93544172048274005711865243..., where r = 0.6032326837741362... (see A237421) is the root of the equation (1-r)^(2*r) = r^(2*r+1). - Vaclav Kotesovec, Mar 03 2014
EXAMPLE
L.g.f.: L(x) = 2*x + 10*x^2/2 + 326*x^3/3 + 64066*x^4/4 + 111968752*x^5/5 +...
where exponentiation yields A206151:
exp(L(x)) = 1 + 2*x + 7*x^2 + 120*x^3 + 16257*x^4 + 22426576*x^5 +...
Illustration of initial terms:
a(1) = 1^1 + 1^2 = 2;
a(2) = 1^2 + 2^3 + 1^4 = 10;
a(3) = 1^3 + 3^4 + 3^5 + 1^6 = 326;
a(4) = 1^4 + 4^5 + 6^6 + 4^7 + 1^8 = 64066; ...
MATHEMATICA
Table[Sum[Binomial[n, k]^(n+k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)^(n+k))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved