login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296178
G.f. A(x) satisfies: [x^n] A(x)^(2^n) = 2^(n^2+n) for n>=0.
1
1, 2, 10, 316, 49286, 29159004, 64306390660, 545236870010872, 18158564638452610374, 2398983772627848027521708, 1262702849939184484481521481260, 2653266051323723630100943807028591432, 22278972285891863226312849051379722700141980, 747923506928218814067091395575400399337895942101656, 100409109325359541267889114151049368121212293075871991443656
OFFSET
0,2
LINKS
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 316*x^3 + 49286*x^4 + 29159004*x^5 + 64306390660*x^6 + 545236870010872*x^7 + 18158564638452610374*x^8 + 2398983772627848027521708*x^9 + 1262702849939184484481521481260*x^10 +...
such that the coefficient of x^n in A(x)^(2^n) equals 2^(n*(n+1)) for n>=0.
ILLUSTRATION OF THE DEFINITION.
The table of coefficients of x^n in A(x)^(2^n) begins:
n=0: [1, 2, 10, 316, 49286, 29159004, 64306390660, ...];
n=1: [1, 4, 24, 672, 99936, 58521472, 128730502912, ...];
n=2: [1, 8, 64, 1536, 205824, 117874688, 257934426112, ...];
n=3: [1, 16, 192, 4096, 440320, 239239168, 517783552000, ...];
n=4: [1, 32, 640, 14336, 1048576, 494141440, 1043408617472, ...];
n=5: [1, 64, 2304, 69632, 3424256, 1073741824, 2119989985280, ...];
n=6: [1, 128, 8704, 434176, 21069824, 2906652672, 4398046511104, ...];
n=7: [1, 256, 33792, 3096576, 229048320, 18765316096, 10095488401408, 72057594037927936, ...]; ...
in which the main diagonal equals 2^(n^2+n):
[1, 4, 64, 4096, 1048576, 1073741824, 4398046511104, ..., 4^(n*(n+1)/2), ...].
RELATED SERIES.
log(A(x)) = 2*x + 16*x^2/2 + 896*x^3/3 + 194560*x^4/4 + 145293312*x^5/5 + 385486422016*x^6/6 + 3815756479332352*x^7/7 + 145259790155527487488*x^8/8 + 21590527069867423236620288*x^9/9 + 12626980518625294860075743051776*x^10/10 +...
MATHEMATICA
terms = 15; A[x_] = Sum[a[n]*x^n, {n, 0, terms-1}];
c[n_] := Coefficient[A[x]^(2^n), x, n] == 2^(n^2+n) // Solve // First;
Do[A[x_] = (A[x] /. c[n]) + O[x]^terms, {n, 0, terms-1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Jan 14 2018 *)
PROG
(PARI) {a(n) = my(A=[1]); for(m=1, n, A = concat(A, 0); V = Vec( Ser(A)^(2^m) ); A[m+1] = 2^(m^2) - V[m+1]/2^m; ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A079278 A275611 A015178 * A206152 A261007 A013034
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 05 2018
STATUS
approved