The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296180 Triangle read by rows: T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n. 1
 1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 13, 10, 1, 1, 13, 19, 19, 13, 1, 1, 16, 25, 28, 25, 16, 1, 1, 19, 31, 37, 37, 31, 19, 1, 1, 22, 37, 46, 49, 46, 37, 22, 1, 1, 25, 43, 55, 61, 61, 55, 43, 25, 1, 1, 28, 49, 64, 73, 76, 73, 64, 49, 28, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS This is member m = 3 of the family of triangles T(m; n, k) = m*(n - k)*k + 1, for m >= 0. For m = 0: A000012(n, k) (read as a triangle); for m = 1: A077028 (rascal), for m = 2: T(2, n+1, k+1) = A130154(n, k). Motivated by A130154 to look at this family of triangles. In general the recurrence is: T(m; n, 0) = 1 and T(m; n, n) = 1 for n >= 0; T(m; n, k) = (T(m; n-1, k-1)*T(m; n-1, k) + m)/T(m; n-2, k-1), for n >= 2, k = 1..n-1. The general g.f. of the sequence of column k (with leading zeros) is G(m; k, x) = (x^k/(1 - x)^2)*(1 + (m*k - 1)*x), k >= 0. The general g.f. of the triangle T(m;, n, k) is GT(m; x, t) = (1 - (1 + t)*x + (m+1)*t*x^2)/((1 - t*x)*(1 - x))^2, and G(m; k, x) = (d/dt)^k GT(m; x, t)/k!|_{t=0}. For a simple combinatorial interpretation see the one given in A130154 by Rogério Serôdio which can be generalized to m >= 3. LINKS Table of n, a(n) for n=0..65. FORMULA T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n, Recurrence: T(n, 0) = 1 and T(n, n) = 1 for n >= 0; T(n, k) = (T(n-1, k-1)*T(n-1, k) + 3)/T(n-2, k-1), for n >= 2, k = 1..n-1. G.f. of column k (with leading zeros): (x^k/(1 - x)^2)*(1 + (3*k-1)*x), k >= 0. G.f. of triangle: (1 - (1 + t)*x + 4*t*x^2)/((1 - t*x)*(1 - x))^2 = 1 + (1+t)*x +(1 + 4*t + t^2)*x^2 + (1 + 7*t + 7*t^2 + t^3)*x^3 = ... EXAMPLE The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 1 1 2: 1 4 1 3: 1 7 7 1 4: 1 10 13 10 1 5: 1 13 19 19 13 1 6: 1 16 25 28 25 16 1 7: 1 19 31 37 37 31 19 1 8: 1 22 37 46 49 46 37 22 1 9: 1 25 43 55 61 61 55 43 25 1 10: 1 28 49 64 73 76 73 64 49 28 1 ... Recurrence: 28 = T(6, 3) = (19*19 + 3)/13 = 28. MATHEMATICA Table[3 k (n - k) + 1, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 20 2017 *) PROG (PARI) lista(nn) = for(n=0, nn, for(k=0, n, print1(3*(n - k)*k + 1, ", "))) \\ Iain Fox, Dec 21 2017 CROSSREFS Cf. A077028, A130154. Columns (without leading zeros): A000012, A016777, A016921, A016921, A017173, A017533, ... Sequence in context: A016521 A146880 A152236 * A157172 A131060 A350512 Adjacent sequences: A296177 A296178 A296179 * A296181 A296182 A296183 KEYWORD nonn,easy,tabl AUTHOR Wolfdieter Lang, Dec 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 21:39 EDT 2024. Contains 375058 sequences. (Running on oeis4.)