|
|
A131060
|
|
3*A007318 - 2*A000012 as infinite lower triangular matrices.
|
|
12
|
|
|
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 16, 10, 1, 1, 13, 28, 28, 13, 1, 1, 16, 43, 58, 43, 16, 1, 1, 19, 61, 103, 103, 61, 19, 1, 1, 22, 82, 166, 208, 166, 82, 22, 1, 1, 25, 106, 250, 376, 376, 250, 106, 25, 1, 1, 28, 133, 358, 628, 754, 628, 358, 133, 28, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Row sums = A097813: (1, 2, 6, 16, 38, 84, 178, ...).
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
First few rows of the triangle:
1;
1, 1;
1, 4, 1;
1, 7, 7, 1;
1, 10, 16, 10, 1;
1, 13, 28, 28, 13, 1;
1, 16, 43, 58, 43, 16, 1;
...
|
|
MAPLE
|
|
|
MATHEMATICA
|
T[n_, k_] = 3*Binomial[n, k] -2; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Aug 20 2008 *)
|
|
PROG
|
(Magma) [3*Binomial(n, k) -2: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
(Sage) [[3*binomial(n, k) -2 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|