login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131060 3*A007318 - 2*A000012 as infinite lower triangular matrices. 12
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 16, 10, 1, 1, 13, 28, 28, 13, 1, 1, 16, 43, 58, 43, 16, 1, 1, 19, 61, 103, 103, 61, 19, 1, 1, 22, 82, 166, 208, 166, 82, 22, 1, 1, 25, 106, 250, 376, 376, 250, 106, 25, 1, 1, 28, 133, 358, 628, 754, 628, 358, 133, 28, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Row sums = A097813: (1, 2, 6, 16, 38, 84, 178, ...).
LINKS
FORMULA
T(n,k) = 3*binomial(n,k) - 2. - Roger L. Bagula, Aug 20 2008
EXAMPLE
First few rows of the triangle:
1;
1, 1;
1, 4, 1;
1, 7, 7, 1;
1, 10, 16, 10, 1;
1, 13, 28, 28, 13, 1;
1, 16, 43, 58, 43, 16, 1;
...
MAPLE
A131060:= (n, k) -> 3*binomial(n, k)-2; seq(seq(A131060(n, k), k = 0..n), n = 0.. 10); # G. C. Greubel, Mar 12 2020
MATHEMATICA
T[n_, k_] = 3*Binomial[n, k] -2; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Aug 20 2008 *)
PROG
(Magma) [3*Binomial(n, k) -2: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
(Sage) [[3*binomial(n, k) -2 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020
CROSSREFS
Sequence in context: A152236 A296180 A157172 * A350512 A124376 A047671
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 13 2007
EXTENSIONS
More terms from Roger L. Bagula, Aug 20 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 21:55 EDT 2024. Contains 375990 sequences. (Running on oeis4.)