The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131060 3*A007318 - 2*A000012 as infinite lower triangular matrices. 12
 1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 16, 10, 1, 1, 13, 28, 28, 13, 1, 1, 16, 43, 58, 43, 16, 1, 1, 19, 61, 103, 103, 61, 19, 1, 1, 22, 82, 166, 208, 166, 82, 22, 1, 1, 25, 106, 250, 376, 376, 250, 106, 25, 1, 1, 28, 133, 358, 628, 754, 628, 358, 133, 28, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums = A097813: (1, 2, 6, 16, 38, 84, 178, ...). LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened FORMULA T(n,k) = 3*binomial(n,k) - 2. - Roger L. Bagula, Aug 20 2008 EXAMPLE First few rows of the triangle: 1; 1, 1; 1, 4, 1; 1, 7, 7, 1; 1, 10, 16, 10, 1; 1, 13, 28, 28, 13, 1; 1, 16, 43, 58, 43, 16, 1; ... MAPLE A131060:= (n, k) -> 3*binomial(n, k)-2; seq(seq(A131060(n, k), k = 0..n), n = 0.. 10); # G. C. Greubel, Mar 12 2020 MATHEMATICA T[n_, k_] = 3*Binomial[n, k] -2; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Aug 20 2008 *) PROG (Magma) [3*Binomial(n, k) -2: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020 (Sage) [[3*binomial(n, k) -2 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020 CROSSREFS Cf. A109128, A123203, A131061, A131063, A131064, A131065, A131066, A131067, A131068. Sequence in context: A152236 A296180 A157172 * A350512 A124376 A047671 Adjacent sequences: A131057 A131058 A131059 * A131061 A131062 A131063 KEYWORD nonn,tabl AUTHOR Gary W. Adamson, Jun 13 2007 EXTENSIONS More terms from Roger L. Bagula, Aug 20 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 21:55 EDT 2024. Contains 375990 sequences. (Running on oeis4.)