login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152236
A modulo two parity function as a triangle sequence: t(n,m)=Binomial[n,m]+p(n,m); Always even parity function: p(n,m)=If[Mod[Binomial[n, m], 2] == 0, Binomial[n, m], If[Mod[Binomial[ n, m], 2] == 1 && Binomial[n, m] > 1, 1 + Binomial[n, m], 0]].
0
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 8, 12, 8, 1, 1, 11, 20, 20, 11, 1, 1, 12, 31, 40, 31, 12, 1, 1, 15, 43, 71, 71, 43, 15, 1, 1, 16, 56, 112, 140, 112, 56, 16, 1, 1, 19, 72, 168, 252, 252, 168, 72, 19, 1, 1, 20, 91, 240, 420, 504, 420, 240, 91, 20, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 6, 16, 30, 64, 128, 260, 510, 1024, 2048,...}
FORMULA
t(n,m)=Binomial[n,m]+p(n,m);
p(n,m)=If[Mod[Binomial[n, m], 2] == 0, Binomial[n, m], If[Mod[Binomial[ n, m], 2] == 1 && Binomial[n, m] > 1, 1 + Binomial[n, m], 0]].
EXAMPLE
{1},
{1, 1},
{1, 4, 1},
{1, 7, 7, 1},
{1, 8, 12, 8, 1},
{1, 11, 20, 20, 11, 1},
{1, 12, 31, 40, 31, 12, 1},
{1, 15, 43, 71, 71, 43, 15, 1},
{1, 16, 56, 112, 140, 112, 56, 16, 1},
{1, 19, 72, 168, 252, 252, 168, 72, 19, 1},
{1, 20, 91, 240, 420, 504, 420, 240, 91, 20, 1}
MATHEMATICA
Clear[p];
p[n_, m_] = If[Mod[Binomial[n, m], 2] == 0, Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 1 + Binomial[n, m], 0]];
Table[Table[Binomial[n, m] + p[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A223489 A016521 A146880 * A296180 A157172 A131060
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 30 2008
STATUS
approved