The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152236 A modulo two parity function as a triangle sequence: t(n,m)=Binomial[n,m]+p(n,m); Always even parity function: p(n,m)=If[Mod[Binomial[n, m], 2] == 0, Binomial[n, m], If[Mod[Binomial[ n, m], 2] == 1 && Binomial[n, m] > 1, 1 + Binomial[n, m], 0]]. 0
 1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 8, 12, 8, 1, 1, 11, 20, 20, 11, 1, 1, 12, 31, 40, 31, 12, 1, 1, 15, 43, 71, 71, 43, 15, 1, 1, 16, 56, 112, 140, 112, 56, 16, 1, 1, 19, 72, 168, 252, 252, 168, 72, 19, 1, 1, 20, 91, 240, 420, 504, 420, 240, 91, 20, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, 6, 16, 30, 64, 128, 260, 510, 1024, 2048,...} LINKS Table of n, a(n) for n=0..65. FORMULA t(n,m)=Binomial[n,m]+p(n,m); p(n,m)=If[Mod[Binomial[n, m], 2] == 0, Binomial[n, m], If[Mod[Binomial[ n, m], 2] == 1 && Binomial[n, m] > 1, 1 + Binomial[n, m], 0]]. EXAMPLE {1}, {1, 1}, {1, 4, 1}, {1, 7, 7, 1}, {1, 8, 12, 8, 1}, {1, 11, 20, 20, 11, 1}, {1, 12, 31, 40, 31, 12, 1}, {1, 15, 43, 71, 71, 43, 15, 1}, {1, 16, 56, 112, 140, 112, 56, 16, 1}, {1, 19, 72, 168, 252, 252, 168, 72, 19, 1}, {1, 20, 91, 240, 420, 504, 420, 240, 91, 20, 1} MATHEMATICA Clear[p]; p[n_, m_] = If[Mod[Binomial[n, m], 2] == 0, Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 1 + Binomial[n, m], 0]]; Table[Table[Binomial[n, m] + p[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A223489 A016521 A146880 * A296180 A157172 A131060 Adjacent sequences: A152233 A152234 A152235 * A152237 A152238 A152239 KEYWORD nonn AUTHOR Roger L. Bagula, Nov 30 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 22:52 EDT 2024. Contains 375059 sequences. (Running on oeis4.)