The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152238 A modulo two parity function as a triangle sequence:k=2; t(n,m)=Binomial[n,m]+p(n,m); Always even parity function: p(n,m)=If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k* Binomial[n, m], 0]]. 0
 1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 12, 18, 12, 1, 1, 25, 30, 30, 25, 1, 1, 18, 75, 60, 75, 18, 1, 1, 35, 105, 175, 175, 105, 35, 1, 1, 24, 84, 168, 210, 168, 84, 24, 1, 1, 45, 108, 252, 378, 378, 252, 108, 45, 1, 1, 30, 225, 360, 630, 756, 630, 360, 225, 30, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, 8, 32, 44, 112, 248, 632, 764, 1568, 3248,...}. The k is added to give a quantum level to the resulting symmetrical functions. LINKS FORMULA t(n,m)=Binomial[n,m]+p(n,m); k=2; p(n,m)=If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k* Binomial[n, m], 0]]. EXAMPLE {1}, {1, 1}, {1, 6, 1}, {1, 15, 15, 1}, {1, 12, 18, 12, 1}, {1, 25, 30, 30, 25, 1}, {1, 18, 75, 60, 75, 18, 1}, {1, 35, 105, 175, 175, 105, 35, 1}, {1, 24, 84, 168, 210, 168, 84, 24, 1}, {1, 45, 108, 252, 378, 378, 252, 108, 45, 1}, {1, 30, 225, 360, 630, 756, 630, 360, 225, 30, 1} MATHEMATICA Clear[p]; k=2; p[n_, m_] = If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k*Binomial[n, m], 0]]; Table[Table[Binomial[n, m] + p[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A230073 A143210 A205133 * A295985 A086645 A168291 Adjacent sequences:  A152235 A152236 A152237 * A152239 A152240 A152241 KEYWORD nonn AUTHOR Roger L. Bagula, Nov 30 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 00:57 EDT 2021. Contains 344980 sequences. (Running on oeis4.)