|
|
A152237
|
|
A modulo two parity function as a triangle sequence:k=1; t(n,m)=Binomial[n,m]+p(n,m); Always even parity function: p(n,m)=If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k* Binomial[n, m], 0]].
|
|
0
|
|
|
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 8, 12, 8, 1, 1, 15, 20, 20, 15, 1, 1, 12, 45, 40, 45, 12, 1, 1, 21, 63, 105, 105, 63, 21, 1, 1, 16, 56, 112, 140, 112, 56, 16, 1, 1, 27, 72, 168, 252, 252, 168, 72, 27, 1, 1, 20, 135, 240, 420, 504, 420, 240, 135, 20, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Row sums are: {1, 2, 6, 16, 30, 64, 128, 260, 510, 1024, 2048,...}. The k is added to give a quantum level to the resulting symmetrical functions.
|
|
LINKS
|
|
|
FORMULA
|
t(n,m)=Binomial[n,m]+p(n,m);
k=1;
p(n,m)=If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k* Binomial[n, m], 0]].
|
|
EXAMPLE
|
{1},
{1, 1},
{1, 4, 1},
{1, 9, 9, 1},
{1, 8, 12, 8, 1},
{1, 15, 20, 20, 15, 1},
{1, 12, 45, 40, 45, 12, 1},
{1, 21, 63, 105, 105, 63, 21, 1},
{1, 16, 56, 112, 140, 112, 56, 16, 1},
{1, 27, 72, 168, 252, 252, 168, 72, 27, 1},
{1, 20, 135, 240, 420, 504, 420, 240, 135, 20, 1}
|
|
MATHEMATICA
|
Clear[p];
k=1;
p[n_, m_] = If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k*Binomial[n, m], 0]];
Table[Table[Binomial[n, m] + p[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|