login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152237
A modulo two parity function as a triangle sequence:k=1; t(n,m)=Binomial[n,m]+p(n,m); Always even parity function: p(n,m)=If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k* Binomial[n, m], 0]].
0
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 8, 12, 8, 1, 1, 15, 20, 20, 15, 1, 1, 12, 45, 40, 45, 12, 1, 1, 21, 63, 105, 105, 63, 21, 1, 1, 16, 56, 112, 140, 112, 56, 16, 1, 1, 27, 72, 168, 252, 252, 168, 72, 27, 1, 1, 20, 135, 240, 420, 504, 420, 240, 135, 20, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 6, 16, 30, 64, 128, 260, 510, 1024, 2048,...}. The k is added to give a quantum level to the resulting symmetrical functions.
FORMULA
t(n,m)=Binomial[n,m]+p(n,m);
k=1;
p(n,m)=If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k* Binomial[n, m], 0]].
EXAMPLE
{1},
{1, 1},
{1, 4, 1},
{1, 9, 9, 1},
{1, 8, 12, 8, 1},
{1, 15, 20, 20, 15, 1},
{1, 12, 45, 40, 45, 12, 1},
{1, 21, 63, 105, 105, 63, 21, 1},
{1, 16, 56, 112, 140, 112, 56, 16, 1},
{1, 27, 72, 168, 252, 252, 168, 72, 27, 1},
{1, 20, 135, 240, 420, 504, 420, 240, 135, 20, 1}
MATHEMATICA
Clear[p];
k=1;
p[n_, m_] = If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k*Binomial[n, m], 0]];
Table[Table[Binomial[n, m] + p[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A060102 A308359 A199065 * A176282 A082043 A177944
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 30 2008
STATUS
approved