login
A082043
Square array, A(n, k) = (k*n)^2 + 2*k*n + 1, read by antidiagonals.
10
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 25, 16, 1, 1, 25, 49, 49, 25, 1, 1, 36, 81, 100, 81, 36, 1, 1, 49, 121, 169, 169, 121, 49, 1, 1, 64, 169, 256, 289, 256, 169, 64, 1, 1, 81, 225, 361, 441, 441, 361, 225, 81, 1, 1, 100, 289, 484, 625, 676, 625, 484, 289, 100, 1
OFFSET
0,5
LINKS
FORMULA
A(n, k) = (k*n)^2 + 2*k*n + 1 (square array).
T(n, k) = (k*(n-k))^2 + 2*k*(n-k) + 1 (number triangle).
A(k, n) = A(n, k).
T(n, n-k) = T(n, k).
A(n, n) = T(2*n, n) = A082044(n).
A(n, n-1) = T(2*n+1, n-1) = A058031(n), n >= 1.
A(n, n-2) = T(2*(n-1), n) = A000583(n-1), n >= 2.
A(n, n-3) = T(2*n-3, n) = A062938(n-3), n >= 3.
Sum_{k=0..n} T(n, k) = A082045(n) (diagonal sums).
Sum_{k=0..n} (-1)^k * T(n, k) = (1/4)*(1+(-1)^n)*(2 - 3*n). - G. C. Greubel, Dec 24 2022
EXAMPLE
Array, A(n, k), begins as:
1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012;
1, 4, 9, 16, 25, 36, 49, 64, 81, ... A000290;
1, 9, 25, 49, 81, 121, 169, 225, 289, ... A016754;
1, 16, 49, 100, 169, 256, 361, 484, 625, ... A016778;
1, 25, 81, 169, 289, 441, 625, 841, 1089, ... A016814;
1, 36, 121, 256, 441, 676, 961, 1296, 1681, ... A016862;
1, 49, 169, 361, 625, 961, 1369, 1849, 2401, ... A016922;
1, 64, 225, 484, 841, 1296, 1849, 2500, 3249, ... A016994;
1, 81, 289, 625, 1089, 1681, 2401, 3249, 4225, ... A017078;
1, 100, 361, 784, 1369, 2116, 3025, 4096, 5329, ... A017174;
1, 121, 441, 961, 1681, 2601, 3721, 5041, 6561, ... A017282;
1, 144, 529, 1156, 2025, 3136, 4489, 6084, 7921, ... A017402;
1, 169, 625, 1369, 2401, 3721, 5329, 7225, 9409, ... A017534;
1, 196, 729, 1600, 2809, 4356, 6241, 8464, 11025, ... ;
Antidiagonals, T(n, k), begin as:
1;
1, 1;
1, 4, 1;
1, 9, 9, 1;
1, 16, 25, 16, 1;
1, 25, 49, 49, 25, 1;
1, 36, 81, 100, 81, 36, 1;
1, 49, 121, 169, 169, 121, 49, 1;
1, 64, 169, 256, 289, 256, 169, 64, 1;
1, 81, 225, 361, 441, 441, 361, 225, 81, 1;
1, 100, 289, 484, 625, 676, 625, 484, 289, 100, 1;
MATHEMATICA
T[n_, k_]:= (k*(n-k))^2 +2*k*(n-k) +1;
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 24 2022 *)
PROG
(Magma)
A082043:= func< n, k | (k*(n-k))^2 +2*k*(n-k) +1 >;
[A082043(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 24 2022
(SageMath)
def A082043(n, k): return (k*(n-k))^2 +2*k*(n-k) +1
flatten([[A082043(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Dec 24 2022
CROSSREFS
Diagonals include A000583, A058031, A062938, A082044 (main diagonal).
Diagonal sums (row sums if viewed as number triangle) are A082045.
Sequence in context: A199065 A152237 A176282 * A177944 A174006 A124216
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 03 2003
STATUS
approved