login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062938
a(n) = n*(n+1)*(n+2)*(n+3)+1 = (n^2 +3*n + 1)^2.
12
1, 25, 121, 361, 841, 1681, 3025, 5041, 7921, 11881, 17161, 24025, 32761, 43681, 57121, 73441, 93025, 116281, 143641, 175561, 212521, 255025, 303601, 358801, 421201, 491401, 570025, 657721, 755161, 863041, 982081, 1113025, 1256641
OFFSET
0,2
COMMENTS
a(n) = product of first four terms of an arithmetic progression + n^4, where the first term is 1 and the common difference is n. E.g. a(1) = 1*2*3*4 +1^4 =25, a(4) = 1*5*9*13 + 4^4= 841 etc. - Amarnath Murthy, Sep 19 2003
Is it possible for one of the squares to be the sum of two or more lesser squares each used only once? - J. M. Bergot, Feb 17 2011
Yes, in fact a(1)-a(11) are examples. [Charles R Greathouse IV, Jun 28 2011]
This sequence demonstrates that the product of any 4 consecutive integers plus 1 is a square. The square roots are in A028387. [Harvey P. Dale, Oct 19 2011]
The sum of three consecutive terms of the sequence is divisible by 3. The quotient is a square number: [a(n)+a(n+1)+a(n+2)]/3=(n^2+5*n+7)^2. - Carmine Suriano, Jan 23 2012
All terms end with 1 or 5. - Uri Geva, Jan 06 2024
REFERENCES
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 85.
FORMULA
a(n+1) = Numerator of ((n+2)! + (n-2)!)/n!, for n>=2. - Artur Jasinski, Jan 09 2007; corrected by Michel Marcus, Dec 25 2022
a(n) = A028387(n)^2. - Jaroslav Krizek, Oct 31 2010
a(n) = n*(n+1)*(n+2)*(n+3)+1^4 = 1*(1+n)*(1+2*n)*(1+3*n)+n^4 =(n^2+3*n+1)^2; in general, n*(n+k)*(n+2*k)*(n+3*k)+k^4 = k*(k+n)*(k+2*n)*(k+3*n)+n^4 = (n^2+3*k*n+k^2)^2. - Charlie Marion, Jan 13 2011
G.f.: (1+20*x+6*x^2-4*x^3+x^4)/(1-x)^5. - Colin Barker, Jun 30 2012
a(n) = A052762(n+3) + 1. - Bruce J. Nicholson, Apr 22 2017
Sum_{n>=0} 1/a(n) = (Pi^2/5)*(1+t^2) - 2*sqrt(5)*Pi*t/25 - 1, where t = tan(Pi*sqrt(5)/2). - Amiram Eldar, Apr 03 2022
E.g.f.: (1 +24*x +36*x^2 +12*x^3 +x^4)*exp(x). - G. C. Greubel, Dec 24 2022
MATHEMATICA
Table[(n^2+3*n+1)^2, {n, 0, 50}]
Times@@#+1&/@Partition[Range[0, 50], 4, 1] (* Harvey P. Dale, Apr 02 2011 *)
PROG
(PARI) j=[]; for(n=0, 70, j=concat(j, (n^2+3*n+1)^2)); j
(PARI) { for (n=0, 1000, write("b062938.txt", n, " ", (n^2 + 3*n + 1)^2) ) } \\ Harry J. Smith, Aug 14 2009
(Magma) [(n^2+3*n+1)^2: n in [0..50]]; // G. C. Greubel, Dec 24 2022
(SageMath) [(n^2+3*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Jul 05 2001
EXTENSIONS
More terms from Jason Earls, Harvey P. Dale and Dean Hickerson, Jul 06 2001
STATUS
approved