login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062936
Numbers n such that n*R(n) is a palindrome, where R(n) (A004086) = digit reversal.
2
1, 2, 3, 11, 12, 21, 22, 101, 102, 111, 112, 121, 122, 201, 202, 211, 212, 221, 1001, 1002, 1011, 1012, 1021, 1022, 1101, 1102, 1111, 1112, 1121, 1201, 1202, 1211, 2001, 2002, 2011, 2012, 2021, 2101, 2102, 2111, 2201, 10001, 10002, 10011, 10012
OFFSET
1,2
LINKS
Harry J. Smith and Indranil Ghosh, Table of n, a(n) for n = 1..4357 (first 500 terms from Harry J. Smith)
Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, On Polynomial Pairs of Integers, arXiv:1210.7593 [math.NT], 2012. - From N. J. A. Sloane, Nov 08 2012
Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, On Polynomial Pairs of Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.5.
FORMULA
Includes integers not ending in 0 with sum of squares of digits < 10. - David W. Wilson, Jul 06 2001
EXAMPLE
122*221 = 26962 hence 122 belongs to the sequence.
MATHEMATICA
Select[Range[100000], Reverse[IntegerDigits[ #*FromDigits[Reverse[IntegerDigits[ # ]]]]] == IntegerDigits[ #*FromDigits[Reverse[IntegerDigits[ # ]]]] &] (* Tanya Khovanova, Jun 17 2009 *)
Select[Range[11000], PalindromeQ[# IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 21 2020 *)
PROG
(PARI) lista(nn) = for(n=1, nn, my(d=digits(n*eval(concat(Vecrev(Str(n)))), 10)); if(d == Vecrev(d), print1(n, ", "))); \\ Altug Alkan, Mar 26 2016
(Python)
A062936_list = []
for n in range(1, 10**5):
....s = str(n*int(str(n)[::-1]))
....if s == s[::-1]:
........A062936_list.append(n) # Chai Wah Wu, Sep 08 2014
CROSSREFS
Sequence in context: A060812 A212129 A172409 * A136972 A227764 A135115
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, Jul 05 2001
EXTENSIONS
Corrected and extended by Dean Hickerson and Patrick De Geest, Jul 06 2001
STATUS
approved