

A062933


Numbers k such that k divides the sum of digits of 8^k.


5



1, 2, 25, 70, 106, 268, 304, 358, 1559, 2369, 2824, 2855, 3616, 5218
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The next term, if it exists, is greater than 100000.  Ryan Propper, Aug 31 2005
No further terms less than 1000000 using the same method Donovan Johnson explains in A175525.


LINKS

Table of n, a(n) for n=1..14.


EXAMPLE

25 divides the sum of digits of 8^25 (i.e., 3+7+7+7+8+9+3+1+8+6+2+9+5+7+1+6+1+7+0+9+5+6+8 = 125), so 25 is in the sequence.


MATHEMATICA

k = 1; Do[k *= 8; s = Plus @@ IntegerDigits[k]; If[Mod[s, n] == 0, Print[n]], {n, 1, 10^5}] (* Ryan Propper, Aug 31 2005 *)


CROSSREFS

Sequence in context: A041071 A153478 A226491 * A069232 A269232 A181920
Adjacent sequences: A062930 A062931 A062932 * A062934 A062935 A062936


KEYWORD

hard,nonn,base


AUTHOR

Shyam Sunder Gupta and Amarnath Murthy, Feb 16 2002


EXTENSIONS

Corrected and extended by Ryan Propper, Aug 31 2005
Edited by Jon E. Schoenfield, May 29 2010


STATUS

approved



