login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062932
a(0) = 0; a(n) = smallest number > a(n-1) such that a(n-1)+a(n) is a palindrome.
5
0, 1, 2, 3, 4, 5, 6, 16, 17, 27, 28, 38, 39, 49, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 102, 110, 112, 120, 122, 130, 132, 140, 142, 150, 153, 160, 163, 170, 173, 180, 183, 190, 193, 200, 204, 210, 214, 220, 224, 230, 234, 240, 244, 250, 255, 260, 265, 270
OFFSET
0,3
LINKS
EXAMPLE
17 is a term hence the next term is 27, as 17 + 27 = 44 is a palindrome, but 17 + 18 = 35 through 17 + 26 = 43 are not palindromes.
MATHEMATICA
palQ[n_] := Block[{d = IntegerDigits@ n}, Reverse@ d == d]; a = {1}; Do[k = a[[n - 1]] + 1; While[! palQ[a[[n - 1]] + k], k++]; AppendTo[a, k], {n, 2, 58}]; {0}~Join~a (* Michael De Vlieger, Oct 05 2015 *)
PROG
(PARI) digitsIn(x)= { local(d); if (x==0, return(1)); d=1 + log(x)\log(10); if (10^d == x, d++, if (10^(d-1) > x, d--)); return(d) }
Palin(x)= { local(y, d, e, f); if (x==0, return(1)); y=x; d=digitsIn(x); t=10^(d - 1); for (i=1, d\2, f=y-10*(y\10); y\=10; e=x\t; x-=t*e; t/=10; if (e!=f, return(0)) ); return(1) }
{ for (n=1, 1000, if (n>1, while (!Palin(a1 + a++), ); a1=a, a=a1=1); write("b062932.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 13 2009
CROSSREFS
Cf. A228730 (non-monotonic variant).
Sequence in context: A004835 A037341 A228730 * A347167 A166098 A124365
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, Jul 05 2001
EXTENSIONS
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 02 2001
Initial a(0)=0 prefixed by M. F. Hasler, Nov 09 2013
STATUS
approved