Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 Feb 19 2024 10:33:05
%S 1,2,3,11,12,21,22,101,102,111,112,121,122,201,202,211,212,221,1001,
%T 1002,1011,1012,1021,1022,1101,1102,1111,1112,1121,1201,1202,1211,
%U 2001,2002,2011,2012,2021,2101,2102,2111,2201,10001,10002,10011,10012
%N Numbers n such that n*R(n) is a palindrome, where R(n) (A004086) = digit reversal.
%H Harry J. Smith and Indranil Ghosh, <a href="/A062936/b062936.txt">Table of n, a(n) for n = 1..4357</a> (first 500 terms from Harry J. Smith)
%H Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, <a href="http://arxiv.org/abs/1210.7593">On Polynomial Pairs of Integers</a>, arXiv:1210.7593 [math.NT], 2012. - From _N. J. A. Sloane_, Nov 08 2012
%H Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Ezerman/eze3.html">On Polynomial Pairs of Integers</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.5.
%F Includes integers not ending in 0 with sum of squares of digits < 10. - _David W. Wilson_, Jul 06 2001
%e 122*221 = 26962 hence 122 belongs to the sequence.
%t Select[Range[100000], Reverse[IntegerDigits[ #*FromDigits[Reverse[IntegerDigits[ # ]]]]] == IntegerDigits[ #*FromDigits[Reverse[IntegerDigits[ # ]]]] &] (* _Tanya Khovanova_, Jun 17 2009 *)
%t Select[Range[11000],PalindromeQ[# IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 21 2020 *)
%o (PARI) lista(nn) = for(n=1, nn, my(d=digits(n*eval(concat(Vecrev(Str(n)))), 10)); if(d == Vecrev(d), print1(n, ", "))); \\ _Altug Alkan_, Mar 26 2016
%o (Python)
%o A062936_list = []
%o for n in range(1,10**5):
%o ....s = str(n*int(str(n)[::-1]))
%o ....if s == s[::-1]:
%o ........A062936_list.append(n) # _Chai Wah Wu_, Sep 08 2014
%Y Cf. A048343, A048344.
%K nonn,base,easy
%O 1,2
%A _Amarnath Murthy_, Jul 05 2001
%E Corrected and extended by _Dean Hickerson_ and _Patrick De Geest_, Jul 06 2001